Volume 37 Issue 3
Jun 2023
Turn off MathJax
Article Contents
XU Hao, LU Chuanhao, LIU Zhifang, ZHANG Tianhui, LEI Jianyin, LI Shiqiang. Design and Mechanical Properties of Star-Shaped Structure with Double Stress Plateaus[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034106. doi: 10.11858/gywlxb.20230614
Citation: XU Hao, LU Chuanhao, LIU Zhifang, ZHANG Tianhui, LEI Jianyin, LI Shiqiang. Design and Mechanical Properties of Star-Shaped Structure with Double Stress Plateaus[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034106. doi: 10.11858/gywlxb.20230614

Design and Mechanical Properties of Star-Shaped Structure with Double Stress Plateaus

doi: 10.11858/gywlxb.20230614
  • Received Date: 14 Feb 2023
  • Rev Recd Date: 14 Mar 2023
  • Accepted Date: 19 Apr 2023
  • Available Online: 25 Jun 2023
  • Issue Publish Date: 05 Jun 2023
  • To achieve the tunable plateau stress and energy absorption in porous grid structures, a design method for star-shaped structures with double stress plateaus was proposed. Three kinds of star-shaped structures with double stress plateaus were designed and fabricated. The mechanical behavior and energy absorption properties under in-plane compressive load were investigated through experimental tests, theoretical analysis and numerical simulations. It was shown that the star-shaped structures with double stress plateaus exhibit two distinct plateau steps in the load-displacement curves. The geometric parameters of the structure and the number of ribs have a significant effect on the structural deformation stability and the plateau stress. The theoretical predictions, experimental results and numerical simulations were in good agreement with each other. The plateau stress and energy absorption capacity of star-shaped structures can be effectively controlled by tuning the corresponding design parameters. To further improve the energy absorption capacity of the star-shaped structure with double stress plateaus, a multi-objective optimization method was performed using the mass and specific absorption energy of the structure as design variables. The radial basis coupling polynomial function proxy model and genetic algorithm (NSGA-Ⅱ) were used to maximize the specific energy absorption and minimize the mass of the structure. Compared to the original structure, the optimized structure has a 6.0% reduction in mass and a 21.5% increase in specific energy absorption.

     

  • loading
  • [1]
    YU X L, ZHOU J, LIANG H Y, et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review [J]. Progress in Materials Science, 2018, 94: 114–173. doi: 10.1016/j.pmatsci.2017.12.003
    [2]
    LV W T, LI D, DONG L. Study on mechanical properties of a hierarchical octet-truss structure [J]. Composite Structures, 2020, 249(8): 112640.
    [3]
    WANG Z G, LI Z D, SHI C, et al. Mechanical performance of vertex-based hierarchical vs square thin-walled multi-cell structure [J]. Thin Walled Structures, 2019, 134: 102–110. doi: 10.1016/j.tws.2018.09.017
    [4]
    WEN G L, CHEN G X, LONG K, et al. Stacked-origami mechanical metamaterial with tailored multistage stiffness [J]. Research Square, 2021, 212(11): 110203.
    [5]
    LU H, WANG X P, CHEN T N. Design and quasi-static responses of a hierarchical negative Poisson’s ratio structure with three plateau stages and three-step deformation [J]. Composite Structures, 2022, 291(2): 115591.
    [6]
    ZHANG Z W, TIAN R L, ZHANG X L, et al. A novel butterfly-shaped auxetic structure with negative Poisson’s ratio and enhanced stiffness [J]. Journal of Materials Science, 2021, 56(25): 1–18.
    [7]
    FU Y M, YU T B, WANG X. Study on a Chiral structure with tunable Poisson’s ratio [J]. Materials, 2021, 14(12): 3338. doi: 10.3390/ma14123338
    [8]
    WANG H, LU Z X, YANG Z Y, et al. In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions [J]. International Journal of Mechanical Sciences, 2019, 151: 746–759. doi: 10.1016/j.ijmecsci.2018.12.009
    [9]
    WANG H, HE Y, YU A, et al. Origami-inspired structures with programmable multi-step deformation [J]. Mechanics of Advanced Materials and Structures, 2022, 137(18): 2133197.
    [10]
    AN M R, WANG L, LIU H T, et al. In-plane crushing response of a novel bidirectional re-entrant honeycomb with two plateau stress regions [J]. Thin-Walled Structures, 2022, 170: 108530.
    [11]
    LIU H T, WANG L. Design 3D improved star-shaped honeycomb with different tip angles from 2D analytical star-shaped model [J]. Composite Structures, 2022, 283(5): 115154.
    [12]
    LI X, FAN R, FAN Z J, et al. Programmable mechanical metamaterials based on hierarchical rotating structures [J]. International Journal of Solids and Structures, 2021, 216(1): 145–155.
    [13]
    WEI L L, ZHAO X, YU Q, et al. A novel star auxetic honeycomb with enhanced in-plane crushing strength [J]. Thin-Walled Structures, 2020, 149(19): 106623.
    [14]
    HECTOR K W, RESTREPO D, BONILLA C T, et al. Mechanics of chiral honeycomb architectures with phase transformations [J]. Journal of Applied Mechanics, 2019, 86(11): 111014. doi: 10.1115/1.4044024
    [15]
    MENG Z Q, LIU M C, ZHANG Y F, et al. Multi-step deformation mechanical metamaterials [J]. Journal of the Mechanics and Physics of Solids, 2020, 144: 104095. doi: 10.1016/j.jmps.2020.104095
    [16]
    AHMAD Z, THAMBIRATNAM D P. Crushing response of foam-filled conical tubes under quasi-static axial loading [J]. Materials & Design, 2009, 30(7): 2393–2403.
    [17]
    王中钢. 轻质蜂窝结构力学 [M] 北京: 科学出版社, 2019.
    [18]
    ABRAMOWICZ W, WIERZBICKI T. Axial crushing of multicorner sheet metal columns [J]. Journal of applied mechanics, 1989, 56(1): 113–120.
    [19]
    MICHAEL M. Choosing basis functions and shape parameters for radial basis function methods [J]. SIAM Undergraduate Research Online, 2011, 4(4): 190–209.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(184) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return