Volume 37 Issue 2
Apr 2023
Turn off MathJax
Article Contents
MI Xingyu, ZHONG Zheng, JIANG Zhaoxiu, WANG Yonggang. Effect of FCC Metal Crystal Orientation on Void Growth under High Strain Rate Loading[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024204. doi: 10.11858/gywlxb.20220711
Citation: MI Xingyu, ZHONG Zheng, JIANG Zhaoxiu, WANG Yonggang. Effect of FCC Metal Crystal Orientation on Void Growth under High Strain Rate Loading[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024204. doi: 10.11858/gywlxb.20220711

Effect of FCC Metal Crystal Orientation on Void Growth under High Strain Rate Loading

doi: 10.11858/gywlxb.20220711
  • Received Date: 25 Dec 2022
  • Rev Recd Date: 07 Mar 2023
  • Available Online: 11 Apr 2023
  • Issue Publish Date: 05 Apr 2023
  • The effect of crystal orientation on the void growth in face centered cubic (FCC) metal under impact loading was studied by adopting rate-dependent crystal plastic constitutive model. VUMAT subroutine was used to embed the rate-dependent crystal plastic constitutive model into the ABAQUS finite element software, and the growth behavior of a single crystal inner void, a bicrystal boundary void and a triangular boundary void was analyzed. The results showed that the void deformation pattern is related to three factors: crystal orientation, grain boundary position (relative orientation of impact loading direction and grain boundary) and loading direction. The relation between the crystal slip line model and grain boundary position can reflect the void growth direction. For intracrystalline voids, the closer the loading direction is to [011], the later the beginning of void deformation is, the greater the overall void deformation is. The closer the loading direction is to [111], the earlier the void starts to deform, the smaller the overall void deformation. For voids at grain boundaries, the location of grain boundaries affect part of the deformation of voids, but not the overall deformation. When the deformation direction of the crystal after the impact is intracrystalline, the grain boundary promotes the growth of voids along the intracrystalline. When the deformation direction is along the grain boundary, the grain boundary promotes the growth of voids along the grain boundary, and inhibits their growth into the crystal.

     

  • loading
  • [1]
    ANTOUN T, CURRAN D R, RAZORENOV S V, et al. Spall fracture [M]. New York: Springer, 2003.
    [2]
    KANEL G I. Spall fracture: methodological aspects, mechanisms and governing factors [J]. International Journal of Fracture, 2010, 163(1/2): 173–191. doi: 10.1007/s10704-009-9438-0
    [3]
    林茜, 谢普初, 胡建波, 等. 不同晶粒度高纯铜层裂损伤演化的有限元模拟 [J]. 物理学报, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726

    LIN Q, XIE P C, HU J B, et al. Numerical simulation on dynamic damage evolution of high pure copper with different grain sizes [J]. Acta Physica Sinica, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [4]
    张凤国, 刘军, 何安民, 等. 层裂损伤孔洞增长模型参数的确定方法及其应用 [J]. 物理学报, 2020, 69(20): 204601. doi: 10.7498/aps.69.20200527

    ZHANG F G, LIU J, HE A M, et al. Method of determining parameters of void growth damage model and its application to simulation of spall test [J]. Acta Physica Sinica, 2020, 69(20): 204601. doi: 10.7498/aps.69.20200527
    [5]
    JIANG Z X, ZHONG Z, XIE P C, et al. Characteristics of the damage evolution and the free surface velocity profile with dynamic tensile spallation [J]. Journal of Applied Physics, 2022, 131(12): 125104. doi: 10.1063/5.0082361
    [6]
    邓小良, 祝文军, 贺红亮, 等. 沿<111>晶向冲击加载下铜中纳米孔洞增长的塑性机制研究 [J]. 高压物理学报, 2007, 21(1): 59–65. doi: 10.11858/gywlxb.2007.01.010

    DENG X L, ZHU W J, HE H L, et al. Plasticity mechanism associated with nano-void growth under impact loading along <111> direction in copper [J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 59–65. doi: 10.11858/gywlxb.2007.01.010
    [7]
    SUN X Y, XU G K, LI X Y, et al. Mechanical properties and scaling laws of nanoporous gold [J]. Journal of Applied Physics, 2013, 113(2): 023505. doi: 10.1063/1.4774246
    [8]
    RUESTES C J, BRINGA E M, STUKOWSKI A, et al. Plastic deformation of a porous bcc metal containing nanometer sized voids [J]. Computational Materials Science, 2014, 88: 92–102. doi: 10.1016/j.commatsci.2014.02.047
    [9]
    RUESTES C J, BRINGA E M, STUKOWSKI A, et al. Atomistic simulation of the mechanical response of a nanoporous body-centered cubic metal [J]. Scripta Materialia, 2013, 68(10): 817–820. doi: 10.1016/j.scriptamat.2013.01.035
    [10]
    RODRIGUEZ-NIEVA J F, RUESTES C J, TANG Y, et al. Atomistic simulation of the mechanical properties of nanoporous gold [J]. Acta Materialia, 2014, 80: 67–76. doi: 10.1016/j.actamat.2014.07.051
    [11]
    TANG T, KIM S, HORSTEMEYER M F. Molecular dynamics simulations of void growth and coalescence in single crystal magnesium [J]. Acta Materialia, 2010, 58(14): 4742–4759. doi: 10.1016/j.actamat.2010.05.011
    [12]
    ZHANG Y Q, JIANG S Y, ZHU X M, et al. Orientation dependence of void growth at triple junction of grain boundaries in nanoscale tricrystal nickel film subjected to uniaxial tensile loading [J]. Journal of Physics and Chemistry of Solids, 2016, 98: 220–232. doi: 10.1016/j.jpcs.2016.07.018
    [13]
    XIANG M Z, HU H B, CHEN J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. doi: 10.1088/0965-0393/21/5/055005
    [14]
    XIANG M Z, HU H B, CHEN J. Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies [J]. Journal of Applied Physics, 2013, 113(14): 144312. doi: 10.1063/1.4799388
    [15]
    SHAO J L, WANG C, WANG P, et al. Atomistic simulations and modeling analysis on the spall damage in lead induced by decaying shock [J]. Mechanics of Materials, 2019, 131: 78–83. doi: 10.1016/j.mechmat.2019.01.012
    [16]
    WANG K, ZHANG F G, HE A M, et al. An atomic view on spall responses of release melted lead induced by decaying shock loading [J]. Journal of Applied Physics, 2019, 125(15): 155107. doi: 10.1063/1.5081920
    [17]
    陈伟. 晶粒尺寸对高纯铝动态力学行为与层裂特性的影响 [D]. 宁波: 宁波大学, 2020.

    CHEN W. Effect of grain size on dynamic fracture behavior and spallation characteristics of high-purity aluminum [D]. Ningbo: Ningbo University, 2020.
    [18]
    HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401–413. doi: 10.1016/0022-5096(72)90017-8
    [19]
    李宏伟, 杨合, 孙志超. 率相关晶体塑性在有限元应用中的关键技术 [J]. 塑性工程学报, 2008, 15(1): 7–13.

    LI H W, YANG H, SUN Z C. Key problems for rate-dependent crystal plasticity applied in finite element simulation [J]. Journal of Plasticity Engineering, 2008, 15(1): 7–13.
    [20]
    刘周攀. FCC金属滑移变形和损伤劣化的晶体塑性有限元分析 [D]. 南宁: 广西大学, 2019.

    LIU Z P. The analysis on slip deformation and damage behavior of FCC metals based on crystal plasticity finite element model [D]. Nanning: Guangxi University, 2019.
    [21]
    王琦, 黄庆学, 马立东. 纯铝弯曲的单晶体塑性有限元模拟 [J]. 太原科技大学学报, 2014, 35(2): 119–122. doi: 10.3969/j.issn.1673-2057.2014.02.009

    WANG Q, HUANG Q X, MA L D. Aluminum bending of crystal plasticity finite element simmulation [J]. Journal of Taiyuan University of Science and Technology, 2014, 35(2): 119–122. doi: 10.3969/j.issn.1673-2057.2014.02.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(3)

    Article Metrics

    Article views(186) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return