Volume 37 Issue 2
Apr 2023
Turn off MathJax
Article Contents
LIAO Guorou, MA Guolu, ZHANG Hao, CHEN Wanhua, ZONG Jianyu, LI Zhongyang. Flow Field Analysis and Efficiency Test of Muzzle Brake Used in First-Stage Gas Gun[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 023301. doi: 10.11858/gywlxb.20220692
Citation: LIAO Guorou, MA Guolu, ZHANG Hao, CHEN Wanhua, ZONG Jianyu, LI Zhongyang. Flow Field Analysis and Efficiency Test of Muzzle Brake Used in First-Stage Gas Gun[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 023301. doi: 10.11858/gywlxb.20220692

Flow Field Analysis and Efficiency Test of Muzzle Brake Used in First-Stage Gas Gun

doi: 10.11858/gywlxb.20220692
  • Received Date: 14 Nov 2022
  • Rev Recd Date: 05 Dec 2022
  • Available Online: 25 Mar 2023
  • Issue Publish Date: 05 Apr 2023
  • In this study, for the muzzle brake with a side hole angle of 120° and the hole diameter of 16 mm used in a first-stage gas gun with a diameter of 50 mm, the flow field morphology is simulated, based on 3D unsteady Navier-Stokes equations and multi-region dynamic grid technology. The characteristics of the formation, development and attenuation of shock wave, as well as the brake efficiency, induced by different launch pressures are analyzed. The launching platform of the first-stage gas gun was built experimentally, and the muzzle brake efficiency was tested. The results show that the maximum deviation of the simulated brake efficiency is less than 1.25% compared with the experiment, and the dynamic development of the brake flow field highly agrees with the experiment. The brake efficiency increases linearly with the launch pressure. For the muzzle brake with a side hole angle of 120° and the diameter of 16 mm, when the launch pressure increases from 5 MPa to 10 MPa, the brake efficiency increases from 4.87% to 12.71%.

     

  • loading
  • [1]
    闫文哲, 李强, 曲普, 等. 气体炮内弹道建模与实验研究 [J]. 火炮发射与控制学报, 2021, 42(4): 87–90, 96. doi: 10.19323/j.issn.1673-6524.2021.04.016

    YAN W Z, LI Q, QU P, et al. Interior ballistic modeling and experimental study of gas gun [J]. Journal of Gun Launch & Control, 2021, 42(4): 87–90, 96. doi: 10.19323/j.issn.1673-6524.2021.04.016
    [2]
    高跃飞. 火炮反后坐装置设计 [M]. 北京: 国防工业出版社, 2010: 212−213.

    GAO Y F. Design of the reverse recoil device of the cannon [M]. Beijing: National Defense Industry Press, 2010: 212−213.
    [3]
    张旋, 余永刚, 张欣尉. 火炮在不同介质中发射的膛口流场特性分析 [J]. 爆炸与冲击, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056

    ZHANG X, YU Y G, ZHANG X W. Analysis of muzzle flow field characteristics of gun fired in different media [J]. Explosion and Shock Waves, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056
    [4]
    赵排航, 李永建, 董金龙, 等. 某型狙击榴弹发射器的膛口制退器优化设计 [J]. 火炮发射与控制学报, 2020, 41(2): 59–63. doi: 10.19323/j.issn.1673-6524.2020.02.012

    ZHAO P H, LI Y J, DONG J L, et al. The optimized design of muzzle brake for a sniper grenade launcher [J]. Journal of Gun Launch & Control, 2020, 41(2): 59–63. doi: 10.19323/j.issn.1673-6524.2020.02.012
    [5]
    赵佳俊, 郭张霞, 赵秀和, 等. 基于CFD的炮口制退器侧孔射流研究 [J]. 火炮发射与控制学报, 2021, 42(4): 13–17,22. doi: 10.19323/j.issn.1673-6524.2021.04.003

    ZHAO J J, GUO Z X, ZHAO X H, et al. Research of the airflow from muzzle brake side holes based on CFD [J]. Journal of Gun Launch & Control, 2021, 42(4): 13–17,22. doi: 10.19323/j.issn.1673-6524.2021.04.003
    [6]
    徐达, 罗业, 张杰, 等. 侧孔参数对炮口制退器流场结构及超压的影响研究 [J]. 火炮发射与控制学报, 2020, 41(4): 32–37, 69. doi: 10.19323/j.issn.1673-6524.2020.04.007

    XU D, LUO Y, ZHANG J, et al. Effects of side hole parameters on structure and overpressure of muzzle brake flow field [J]. Journal of Gun Launch & Control, 2020, 41(4): 32–37, 69. doi: 10.19323/j.issn.1673-6524.2020.04.007
    [7]
    咸东鹏, 廖振强, 肖俊波, 等. 喷管高效膛口制退器对机枪射击性能的影响 [J]. 振动、测试与诊断, 2019, 39(3): 560–564. doi: 10.16450/j.cnki.issn.1004-6801.2019.03.015

    XIAN D P, LIAO Z Q, XIAO J B, et al. Influence of nozzle high efficiency muzzle brake on firing performance of gun [J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(3): 560–564. doi: 10.16450/j.cnki.issn.1004-6801.2019.03.015
    [8]
    LEI H X, WANG Z J, ZHAO J L. Stress analysis of muzzle brake by using fluid-solid coupled method [J]. Journal of Engineering Science and Technology Review, 2016, 9(4): 48–55. doi: 10.25103/jestr.094.07
    [9]
    张焕好, 陈志华, 姜孝海, 等. 高速弹丸穿越不同制退器时的膛口流场波系结构研究 [J]. 兵工学报, 2012, 33(5): 623–629.

    ZHANG H H, CHEN Z H, JIANG X H, et al. Investigation on the blast wave structures of a high-speed projectile flying through different muzzle brakes [J]. Acta Armamentarii, 2012, 33(5): 623–629.
    [10]
    王杨, 姜孝海, 杨绪普, 等. 小口径膛口射流噪声的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 508–512. doi: 10.11883/1001-1455(2014)04-0508-05

    WANG Y, JIANG X H, YANG X P, et al. Numerical simulation on jet noise induced by complex flows discharging from small caliber muzzle [J]. Explosion and Shock Waves, 2014, 34(4): 508–512. doi: 10.11883/1001-1455(2014)04-0508-05
    [11]
    赵欣怡, 周克栋, 赫雷, 等. 带制退器的膛口射流噪声数值模拟与实验研究 [J]. 爆炸与冲击, 2019, 39(10): 103201. doi: 10.11883/bzycj-2018-0279

    ZHAO X Y, ZHOU K D, HE L, et al. Numerical simulation and experimental study on jet noise from a small caliber rifle with a muzzle brake [J]. Explosion and Shock Waves, 2019, 39(10): 103201. doi: 10.11883/bzycj-2018-0279
    [12]
    余海伟, 袁军堂, 汪振华, 等. 新型结构炮口制退器的膛口冲击波数值研究与性能分析 [J]. 高压物理学报, 2020, 34(6): 065102. doi: 10.11858/gywlxb.20200568

    YU H W, YUAN J T, WANG Z H, et al. Muzzle blast wave investigation and performance analysis of new-structure muzzle brake based on numerical simulation [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065102. doi: 10.11858/gywlxb.20200568
    [13]
    CHATURVEDI E, DWIVEDI R K. Computer aided design and analysis of a tunable muzzle brake [J]. Defence Technology, 2019, 15(1): 89–94. doi: 10.1016/j.dt.2018.06.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(763) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return