Volume 37 Issue 2
Apr 2023
Turn off MathJax
Article Contents
ZHANG Shiwen, CHEN Yan, DAN Jiakun, LI Yinglei, LIU Mingtao, TANG Tiegang. Recovery of Expansion Fracture Fragments of a 45 Steel Hemispherical Shell Driven by Detonation[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025301. doi: 10.11858/gywlxb.20220665
Citation: ZHANG Shiwen, CHEN Yan, DAN Jiakun, LI Yinglei, LIU Mingtao, TANG Tiegang. Recovery of Expansion Fracture Fragments of a 45 Steel Hemispherical Shell Driven by Detonation[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025301. doi: 10.11858/gywlxb.20220665

Recovery of Expansion Fracture Fragments of a 45 Steel Hemispherical Shell Driven by Detonation

doi: 10.11858/gywlxb.20220665
  • Received Date: 28 Sep 2022
  • Rev Recd Date: 28 Oct 2022
  • Available Online: 05 Apr 2023
  • Issue Publish Date: 05 Apr 2023
  • Based on the velocity distribution of fragments of a metal hemispherical shell subjected to explosive loading, a new fragment recovery system with the combination of polyurethane, water and polyurethane medium was designed. The applied waterproof polyurethane foam barrel is made up of three symmetric components each with sidewall and bottom formed in a mold. The foam barrel is filled with water at the bottom, and an additional floating foam board with a certain thickness is applied in order to protect the outer recovery tank from the impact of fragments. The full recovery experiment with the foam barrel was carried out for a 45 steel hemispherical shell under central point explosion. The results showed that more than 88% fragments, which penetrated through the sidewall of the foam barrel and the floating foam board, could be directly recovered from the bottom of the recovery tank. The fragments have well discernible inner and outer surfaces. The floating board and water would effectively reduce the speed of formed fragments, and the bottom of the foam barrel remained undamaged. The newly designed recovery system can recover flying fragments close to 2π solid angles, thus is suitable for a large range of recovery experiments in which experiment device is on one side of the initiation point. This indicates the appearance type of experiment devices is extended. Besides, the new system reduces the total size of the combined attenuation layer to 70 cm in the vertical direction, thus providing a basis for further optimizing and reducing the size of the recovery tank. The characteristic distribution of the fragment, including mass, thickness and size, et al., was analyzed based on the recovery technique. The difference of characteristic between hemispherical shell fragments and cylindrical shell fragments was also analyzed briefly. Results show that the fracture strain of hemispherical shell is obviously less than that of cylindrical shell. This research provides useful experimental data supporting the study of fracture mechanism of expanding shells under different stress states.

     

  • loading
  • [1]
    卢秋虹, 王宁, 范诚, 等. 壁厚对HR2钢柱壳爆轰加载下膨胀断裂行为的影响 [J]. 材料研究学报, 2020, 34(4): 241–246.

    LU Q H, WANG N, FAN C, et al. Effect of shell thickness on expanding fracture behavior of HR2 steel cylinders under explosive loading [J]. Chinese Journal of Materials Research, 2020, 34(4): 241–246.
    [2]
    禹富有, 董新龙, 俞鑫炉, 等. 不同填塞装药下金属柱壳断裂特性的实验研究 [J]. 兵工学报, 2019, 40(7): 1418−1424.

    YU F Y, DONG X L, YU X L, et al. Fracture characteristics of metal cylinder shells with different charges [J]. Acta Armamentarii, 2019, 40(7): 1418−1424.
    [3]
    HIROE T, FUJIWARA K, HATA H, et al. Explosively driven expansion and fragmentation behavior for cylinders, spheres and rings of 304 stainless steel [J]. Materials Science Forum, 2010: 638–642.
    [4]
    HIROE T, FUJIWARA K, HATA H, et al. Deformation and fragmentation behaviour of exploded metal cylinders and the effects of wall materials, configuration, explosive energy and initiated locations [J]. International Journal of Impact Engineering, 2008, 35(12): 1578–1586. doi: 10.1016/j.ijimpeng.2008.07.002
    [5]
    汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. doi: 10.11883/1001-1455(2006)02-0129-05

    TANG T G, LI Q Z, SUN X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. doi: 10.11883/1001-1455(2006)02-0129-05
    [6]
    胡八一, 董庆东, 韩长生, 等. TC4钛合金自然破片的引燃机理 [J]. 爆炸与冲击, 1995, 12(3): 254–258.

    HU B Y, DONG Q D, HAN C S, et al. Analysis of the firing mechanics for Ti-6Al-4V natural fragments [J]. Explosion and Shock Waves, 1995, 12(3): 254–258.
    [7]
    MOTT N F. A theory of the fragmentation of shells and bomb [C]//Fragmentation of Rings and Shells. Shock Wave and High Pressure Phenomena. Berlin, Heidelberg: Springer, 1943.
    [8]
    MOTT N F. Fragmentation of shells cases [J]. Proceedings of the Royal Society of London A, 1947, 189: 300–308.
    [9]
    GRADY D. Investigation of explosively driven fragmentation of metals-two-dimensional fracture and fragmentation of metal shells: UCRL-CR-152264 [R]. Livermore, CA: Lawrence Livermore National Laboratory, 2003.
    [10]
    GURNEY R W. The initial velocity of fragments from bombs, shells and grenades: BRL Report 450 [R]. MaryLand, USA: Ballistic Research Laboratory, 1943.
    [11]
    金山, 汤铁钢, 孙学林, 等. 不同热处理下45钢柱壳的动态性能 [J]. 爆炸与冲击, 2006, 26(5): 423–428. doi: 10.3321/j.issn:1001-1455.2006.05.006

    JIN S, TANG T G, SUN X L, et al. Dynamic characteristics of 45 steel cylinder shell by different heat treatment conditions [J]. Explosion and Shock Waves, 2006, 26(5): 423–428. doi: 10.3321/j.issn:1001-1455.2006.05.006
    [12]
    何辉, 禹海军, 王毅, 等. 4 MeV闪光X光机轫致辐射靶设计 [J]. 强激光与粒子束, 2019, 31(12): 125102. doi: 10.11884/HPLPB201931.190273

    HE H, YU H J, WANG Y, et al. Design of bremsstrahlung target of 4 MeV flash X-ray machine [J]. High Power Laser and Particle Beams, 2019, 31(12): 125102. doi: 10.11884/HPLPB201931.190273
    [13]
    施将君, 刘进, 刘军. 闪光照相中X光能谱对有效吸收系数的影响 [J]. 强激光与粒子束, 2004, 16(6): 809–812.

    SHI J J, LIU J, LIU J. Effect of X-ray penetration spectrum on attenuation coefficient in flash radiography [J]. High Power Laser and Particle Beams, 2004, 16(6): 809–812.
    [14]
    BOLIS C, COUNILH D, LAGRANGE J M, et al. Fragmentation of a titanium alloy shell in expansion: from experiment to simulation [J]. Procedia Engineering, 2013, 58: 672-677.
    [15]
    刘明涛, 汤铁钢. 爆炸加载下金属壳体膨胀断裂过程中的关键物理问题 [J]. 爆炸与冲击, 2021, 41(1): 011402. doi: 10.11883/bzycj-2020-0351

    LIU M T, TANG T G. Key physical problems in the expanding fracture of explosively driven metallic shells [J]. Explosion and Shock Waves, 2021, 41(1): 011402. doi: 10.11883/bzycj-2020-0351
    [16]
    ZHANG Z B, HUANG F L, CAO Y, et al. A fragments mass distribution scaling relations for fragmenting shells with variable thickness subjected to internal explosive loading [J]. International Journal of Impact Engineering, 2018, 120: 79–94. doi: 10.1016/j.ijimpeng.2018.05.013
    [17]
    汤铁钢, 谷岩, 李庆忠, 等. 爆轰加载下金属柱壳膨胀破裂过程研究 [J]. 爆炸与冲击, 2003, 23(6): 529–533. doi: 10.3321/j.issn:1001-1455.2003.06.008

    TANG T G, GU Y, LI Q Z, et al. Expanding fracture of steel cylinder shell by detonation driving [J]. Explosion and Shock Waves, 2003, 23(6): 529–533. doi: 10.3321/j.issn:1001-1455.2003.06.008
    [18]
    张绍兴, 李翔宇, 丁亮亮, 等. 聚焦式战斗部破片轴向飞散控制技术 [J]. 高压物理学报, 2018, 32(1): 015103. doi: 10.11858/gywlxb.20170512

    ZHANG S X, LI X Y, DING L L, et al. Axial dispersion control of focusing fragment warhead [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 015103. doi: 10.11858/gywlxb.20170512
    [19]
    史志鑫, 尹建平, 王志军, 等. 预制破片的形状对破片飞散性能影响的数值模拟研究 [J]. 兵器装备工程学报, 2017, 38(12): 31–35. doi: 10.11809/scbgxb2017.12.008

    SHI Z X, YIN J P, WANG Z J, et al. Numerical simulation of the influence of prefabricated fragments shape on fragment scattering performance [J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 31–35. doi: 10.11809/scbgxb2017.12.008
    [20]
    李翔宇, 卢芳云, 王志兵, 等. 可变形定向破片战斗部模型试验和数值模拟研究 [J]. 国防科技大学学报, 2006, 28(1): 121–124. doi: 10.3969/j.issn.1001-2486.2006.01.027

    LI X Y, LU F Y, WANG Z B, et al. A study of simulation and experiment of target-directed deformable warhead model [J]. Journal of National University of Defense Technology, 2006, 28(1): 121–124. doi: 10.3969/j.issn.1001-2486.2006.01.027
    [21]
    宋桂飞, 李成国, 夏福君, 等. 回收战斗部破片的新型爆炸容器及应用 [J]. 爆炸与冲击, 2008, 28(4): 372–377. doi: 10.3321/j.issn:1001-1455.2008.04.015

    SONG G F, LI C G, XIA F J, et al. A new explosion vessel used to recover warhead fragments and its application [J]. Explosion and Shock Waves, 2008, 28(4): 372–377. doi: 10.3321/j.issn:1001-1455.2008.04.015
    [22]
    柏劲松, 刘坤, 张红平, 等. 基于MVPPM的流固耦合方法在爆炸容器数值计算中的应用 [J]. 高压物理学报, 2013, 27(3): 343–351. doi: 10.11858/gywlxb.2013.03.005

    BAI J S, LIU K, ZHANG H P, et al. Application of the MVPPM-based fliud-solid coupling method [J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 343–351. doi: 10.11858/gywlxb.2013.03.005
    [23]
    陈志闯, 李伟兵, 朱建军, 等. 40CrMnSiB钢圆柱壳体膨胀断裂中间状态回收试验研究 [J]. 兵工学报, 2018, 39(11): 2137–2144. doi: 10.3969/j.issn.1000-1093.2018.11.007

    CHEN Z C, LI W B, ZHU J J, et al. Recovery experiment study of cylindrical 40CrMnSiB steel shell in intermediate phase of expanding fracture processes [J]. Acta Armamentarii, 2018, 39(11): 2137–2144. doi: 10.3969/j.issn.1000-1093.2018.11.007
    [24]
    罗渝松, 李伟兵, 陈志闯, 等. 内爆加载下金属柱壳的冻结回收方法 [J]. 爆炸与冲击, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041

    LUO Y S, LI W B, CHEN Z C, et al. A freezing recovery method for metallic cylinder shells under internal explosive loading [J]. Explosion and Shock Waves, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041
    [25]
    GOTO D M, BECKER R, ORZECHOWSKI T J, et al. Investigation of the fracture and fragmentation of explosively driven rings and cylinders [J]. International Journal of Impact Engineering, 2008, 35: 1547–1556. doi: 10.1016/j.ijimpeng.2008.07.081
    [26]
    张世文, 李英雷, 陈艳, 等. 爆炸加载下金属柱壳破片软回收技术研究 [J]. 爆炸与冲击, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449

    ZHANG S W, LI Y L, CHEN Y, et al. Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading [J]. Explosion and Shock Waves, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449
    [27]
    吴文苍, 董新龙, 庞振, 等. TA2钛合金开口柱壳外爆碎片分布研究 [J]. 力学学报, 2021, 53(6): 1795–1806. doi: 10.6052/0459-1879-21-017

    WU W C, DONG X L, PANG Z, et al. Study on fragments distribution of explosively driven cylinders for TA2 titanium alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1795–1806. doi: 10.6052/0459-1879-21-017
    [28]
    MERCIER S, GRANIER N, MOLINARI A, et al. Multiple necking during the dynamic expansion of hemispherical metallic shells, from experiments to modelling [J]. Journal of the Mechanics and Physics of Solids, 2010, 58: 955–982. doi: 10.1016/j.jmps.2010.05.001
    [29]
    张世文, 龙建华, 贾宏志, 等. 平面冲击波在有机玻璃中的衰减测试与数值模拟 [J]. 兵工学报, 2016, 37(7): 1214–1219.

    ZHANG S W, LONG J H, JIA H Z, et al. Measuring and numerical simulation of attenuation of planar shock wave in PMMA [J]. Acta Armamentarii, 2016, 37(7): 1214–1219.
    [30]
    李英雷, 刘明涛, 陈艳, 等. 线起爆膨胀柱壳实验加载及诊断技术 [J]. 爆炸与冲击, 2022, 42(12): 124101. LI Y L, LIU M T, CHEN Y, et al. A loading and diagnosis technology of expanding cylinder experiment with linear initiated explosives [J]. Explosion and Shock Waves, 2022, 42(12): 124101.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views(172) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return