Volume 36 Issue 5
Oct 2022
Turn off MathJax
Article Contents
XIAO You, ZHI Xiaoqi, WANG Qi, YU Yongli, FAN Xinghua. Influence of Flame Characteristics on Fast Cook-off[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055201. doi: 10.11858/gywlxb.20220557
Citation: XIAO You, ZHI Xiaoqi, WANG Qi, YU Yongli, FAN Xinghua. Influence of Flame Characteristics on Fast Cook-off[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055201. doi: 10.11858/gywlxb.20220557

Influence of Flame Characteristics on Fast Cook-off

doi: 10.11858/gywlxb.20220557
  • Received Date: 06 Apr 2022
  • Rev Recd Date: 20 Apr 2022
  • Available Online: 17 Jun 2022
  • Issue Publish Date: 11 Oct 2022
  • In order to study the influence of flame characteristics on cook-off bomb in pool fire under the condition of fast cook-off, a fast cook-off model of pool fire was established, and the heat transfer characteristics of the cook-off bomb were obtained, then the influences of the placement height of the cook-off bomb and the size of the oil pool on the flame characteristics during the burning process were analyzed. The results show that with the increasing placement height of the bomb, the highest temperature region of the bomb surface shifts from the upper surface to the lower surface, and the peak radiation heat flux shifts from the top to the bottom of the bomb. With the increasing size of the oil pool, the surface temperature of the bomb becomes more uniform, the heat flux absorbed by the bomb increases, and the surface temperature of the bomb increases. Therefore, in the fast cook-off test, both the placement height of the bomb and the size of the oil pool affect the flame characteristics, and then the fast cook-off characteristics of the bomb.

     

  • loading
  • [1]
    GROSS M L, HEDMAN T D, MEREDITH K V. Considerations for fast cook-off simulations [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(6): 1036–1043. doi: 10.1002/prep.201500253
    [2]
    YANG H W, YU Y G, YE R, et al. Cook-off test and numerical simulation of AP/HTPB composite solid propellant [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 1–9. doi: 10.1016/j.jlp.2015.11.028
    [3]
    SAHIN H, NARIN B, KURTULUS D F. Development of a design methodology against fast cook-off threat for insensitive munitions [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 580–587. doi: 10.1002/prep.201500333
    [4]
    AYDEMIR E, ULAS A. A numerical study on the thermal initiation of a confined explosive in 2-D geometry [J]. Journal of Hazardous Materials, 2011, 186(1): 396–400. doi: 10.1016/j.jhazmat.2010.11.015
    [5]
    ASANTE D O, KIM S, CHAE J, et al. CFD cook-off simulation and thermal decomposition of confined high energetic material [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 699–705. doi: 10.1002/prep.201400296
    [6]
    YE Q, YU Y G. Numerical simulation of cook-off characteristics for AP/HTPB [J]. Defence Technology, 2018, 14(5): 451–456. doi: 10.1016/j.dt.2018.06.013
    [7]
    王帅. 输运热对炸药快烤响应特性影响的研究 [D]. 太原: 中北大学, 2020.

    WANG S. Study on the effect of transport heat on the response characteristics of explosives fast cook-off [D]. Taiyuan: North University of China, 2020.
    [8]
    REHM R G, BAUM H R. The equations of motion for thermally driven, buoyant flows [J]. Journal of Research of the National Bureau of Standards, 1978, 83(3): 297–308. doi: 10.6028/jres.083.019
    [9]
    WICKSTRÖM U, ROBBINS A, BAKER G. The use of adiabatic surface temperature to design structures for fire exposure [J]. Journal of Structural Fire Engineering, 2011, 2(1): 21–28. doi: 10.1260/2040-2317.2.1.21
    [10]
    葛绍岩, 那鸿悦. 热辐射性质及其测量 [M]. 北京: 科学出版社, 1989.

    GE S Y, NA H Y. Thermal radiation properties and measurement [M]. Beijing: Science Press, 1989.
    [11]
    杨世铭, 陶文铨. 传热学 [M]. 北京: 高等教育出版社, 2006.

    YANG S M, TAO W Q. Heat transfer [M]. Beijing: Higher Education Press, 2006.
    [12]
    WICKSTRÖM U. The plate thermometer: a simple instrument for reaching harmonized fire resistance tests [J]. Fire Technology, 1994, 30(2): 195–208. doi: 10.1007/BF01040002
    [13]
    任玉新, 陈海昕. 计算流体力学基础 [M]. 北京: 清华大学出版社, 2006.

    REN Y X, CHEN H X. Fundamentals of computational fluid dynamics [M]. Beijing: Tsinghua University Press, 2006.
    [14]
    MCGUIRE R R, TARVER C M. Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives [C]//Proceedings of the 7th Symposium on Detonation. Annapolis, Maryland, US: Office of Naval Research, 1981.
    [15]
    ABD-ELGHANY M, ELBEIH A, HASSANEIN S. Thermal behavior and decomposition kinetics of RDX and RDX/HTPB composition using various techniques and methods [J]. Central European Journal of Energetic Materials, 2016, 13(3): 714–735. doi: 10.22211/cejem/64954
    [16]
    陈朗, 王沛, 冯长根. 考虑相变的炸药烤燃数值模拟计算 [J]. 含能材料, 2009, 17(5): 568–573. doi: 10.3969/j.issn.1006-9941.2009.05.017

    CHEN L, WANG P, FENG C G. Numerical simulation of cook-off about phase transition of explosive [J]. Chinese Journal of Energetic Materials, 2009, 17(5): 568–573. doi: 10.3969/j.issn.1006-9941.2009.05.017
    [17]
    徐瑞, 智小琦, 王帅. 缓释结构对B炸药烤燃响应烈度的影响 [J]. 高压物理学报, 2021, 35(3): 035201. doi: 10.11858/gywlxb.20200657

    XU R, ZHI X Q, WANG S. Influence of venting structure on the cook-off response intensity of composition B [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035201. doi: 10.11858/gywlxb.20200657
    [18]
    COOKE J A, BELLUCCI M, SMOOKE M D, et al. Computational and experimental study of JP-8, a surrogate, and its components in counterflow diffusion flames [J]. Proceedings of the Combustion Institute, 2005, 30(1): 439–446. doi: 10.1016/j.proci.2004.08.046
    [19]
    VIOLI A, YAN S, EDDINGS E G, et al. Experimental formulation and kinetic model for JP-8 surrogate mixtures [J]. Combustion Science and Technology, 2002, 174(11/12): 399–417. doi: 10.1080/00102200215080
    [20]
    CATHONNET M, VOISIN D, ETSOULI A, et al. Kerosene combustion modelling using detailed and reduced chemical kinetic mechanisms [C]// Symposium Applied Vehicle Technology Panel on Gas Turbine Engine Combustion (RTO Meeting Proceedings). Lisbon, Portugal: NATO Research and Technology Organisation, 1999.
    [21]
    曾娇. 开放空间航空煤油池火燃烧数值模拟 [D]. 哈尔滨: 哈尔滨工程大学, 2016.

    ZENG J. Numerical simulation of aviation fuel pool fire in open air [D]. Harbin: Harbin Engineering University, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(7)

    Article Metrics

    Article views(546) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return