Volume 36 Issue 4
Jul 2022
Turn off MathJax
Article Contents
GAO Feiyan, LIU Rui, CHEN Pengwan, LONG Yao, CHEN Jun. Molecular Dynamics Simulation of Mechanical Properties of Polymer Bonded Explosive under Tension Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044201. doi: 10.11858/gywlxb.20220521
Citation: GAO Feiyan, LIU Rui, CHEN Pengwan, LONG Yao, CHEN Jun. Molecular Dynamics Simulation of Mechanical Properties of Polymer Bonded Explosive under Tension Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044201. doi: 10.11858/gywlxb.20220521

Molecular Dynamics Simulation of Mechanical Properties of Polymer Bonded Explosive under Tension Loading

doi: 10.11858/gywlxb.20220521
  • Received Date: 25 Feb 2022
  • Rev Recd Date: 01 Apr 2022
  • Available Online: 26 May 2022
  • Issue Publish Date: 28 Jul 2022
  • In this paper, molecular dynamics method is used to study the strain rate dependence of HMX-based polymer bonded explosive (PBX) interface under dynamic tension loading. Our results show that the tension strength and elastic modulus of PBX increase with the increasing of strain rate. The fracture of HMX-F2311 is dependent on the strain rate: the initial strain mainly appears on the binder F2311, a main crack perpendicular to the loading direction is formed at low strain rate, while the failure path distributes on the whole model under high strain rate; the fracture of PBX is due to the debonding of binder. With the increasing of strain rate, the potential energy of HMX-F2311 increases rapidly, and the van der Waals force interaction plays a crucial role in the evolution of potential energy under high strain rate. The simulation reveals the effect of strain rate on the interface microstructure, mechanical behavior and fracture mechanism of the HMX-F2311, providing opinions for the design, preparation and safety of PBX.

     

  • loading
  • [1]
    CHEN P W, HUANG F L, DING Y S. Microstructure, deformation and failure of polymer bonded explosives [J]. Journal of Materials Science, 2007, 42(13): 5272–5280. doi: 10.1007/s10853-006-0387-y
    [2]
    ZHAO P D, LU F Y, LIN Y L, et al. Technique for combined dynamic compression-shear testing of PBXs [J]. Experimental Mechanics, 2012, 52(2): 205–213. doi: 10.1007/s11340-011-9534-8
    [3]
    ZHU W, XIAO J J, ZHU W H, et al. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives [J]. Journal of Hazardous Materials, 2009, 164(2/3): 1082–1088. doi: 10.1016/j.jhazmat.2008.09.021
    [4]
    LONG Y, CHEN J. A molecular dynamics study of the early-time mechanical heating in shock-loaded octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine-based explosives [J]. Journal of Applied Physics, 2014, 116(3): 033516. doi: 10.1063/1.4890715
    [5]
    AN Q, ZYBIN S V, GODDARD W A, et al. Elucidation of the dynamics for hot-spot initiation at nonuniform interfaces of highly shocked materials [J]. Physical Review B, 2011, 84(22): 220101. doi: 10.1103/PhysRevB.84.220101
    [6]
    YEAGER J D, RAMOS K J, SINGH S, et al. Nanoindentation of explosive polymer composites to simulate deformation and failure [J]. Materials Science and Technology, 2012, 28(9/10): 1147–1155. doi: 10.1179/1743284712Y.0000000011
    [7]
    RAE P J, GOLDREIN H T, PALMER S J P, et al. Quasi-static studies of the deformation and failure of β-HMX based polymer bonded explosives [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458: 743–762. doi: 10.1098/rspa.2001.0894
    [8]
    XIAO Y C, SUN Y, WANG Z J. Investigating the static and dynamic tensile mechanical behaviour of polymer-bonded explosives [J]. Strain, 2018, 54(2): e12262. doi: 10.1111/str.12262
    [9]
    WANG X J, WU Y Q, HUANG F L. Numerical mesoscopic investigations of dynamic damage and failure mechanisms of polymer bonded explosives [J]. International Journal of Solids and Structures, 2017, 129: 28–39. doi: 10.1016/j.ijsolstr.2017.09.017
    [10]
    DAI K D, LU B D, CHEN P W, et al. Modelling microstructural deformation and the failure process of plastic bonded explosives using the cohesive zone model [J]. Materials, 2019, 12(22): 3661. doi: 10.3390/ma12223661
    [11]
    FU X L, FAN X Z, JU X H, et al. Molecular dynamic simulations on the interaction between an HTPE polymer and energetic plasticizers in a solid propellant [J]. RSC Advances, 2015, 5(65): 52844–52851. doi: 10.1039/C5RA05312A
    [12]
    SHI Y B, GONG J, HU X Y, et al. Comparative investigation on the thermostability, sensitivity, and mechanical performance of RDX/HMX energetic cocrystal and its mixture [J]. Journal of Molecular Modeling, 2020, 26(7): 176. doi: 10.1007/s00894-020-04426-0
    [13]
    FU J B, WANG B G, CHEN Y F, et al. Computational analysis the relationships of energy and mechanical properties with sensitivity for FOX-7 based PBXs via MD simulation [J]. Royal Society Open Science, 2021, 8(2): 200345. doi: 10.1098/rsos.200345
    [14]
    YU C, YANG L, CHEN H Y, et al. Microscale investigations of mechanical responses of TKX-50 based polymer bonded explosives using MD simulations [J]. Computational Materials Science, 2020, 172: 109287. doi: 10.1016/j.commatsci.2019.109287
    [15]
    XIAO J J, HUANG H, LI J S, et al. A molecular dynamics study of interface interactions and mechanical properties of HMX-based PBXs with PEG and HTPB [J]. Journal of Molecular Structure: Theochem, 2008, 851(1): 242–248. doi: 10.1016/j.theochem.2007.11.021
    [16]
    XIAO J J, HUANG H, LI J S, et al. Computation of interface interactions and mechanical properties of HMX-based PBX with Estane 5703 from atomic simulation [J]. Journal of Materials Science, 2008, 43(17): 5685–5691. doi: 10.1007/s10853-008-2704-0
    [17]
    XIAO J J, FANG G Y, JI G F, et al. Simulation investigations in the binding energy and mechanical properties of HMX-based polymer-bonded explosives [J]. Chinese Science Bulletin, 2005, 50(1): 21–26. doi: 10.1360/982004-147
    [18]
    WANG L Y, ZHONG K, MA J, et al. Learning the initial mechanical response of composite material: structure evolution and energy profile of a plastic bonded explosive under rapid loading [J]. Journal of Molecular Modeling, 2019, 25(2): 31. doi: 10.1007/s00894-018-3913-3
    [19]
    LV L, YANG M L, LONG Y, et al. Molecular dynamics simulation of structural and mechanical features of a polymer-bonded explosive interface under tensile deformation [J]. Applied Surface Science, 2021, 557: 149823. doi: 10.1016/j.apsusc.2021.149823
    [20]
    SMITH G D, BHARADWAJ R K. Quantum chemistry based force field for simulations of HMX [J]. The Journal of Physical Chemistry B, 1999, 103(18): 3570–3575. doi: 10.1021/jp984599p
    [21]
    BEDROV D, AYYAGARI C, SMITH G D, et al. Molecular dynamics simulations of HMX crystal polymorphs using a flexible molecule force field [J]. Journal of Computer: Aided Materials Design, 2001, 8(2/3): 77–85. doi: 10.1023/A:1020046817543
    [22]
    BEDROV D, BORODIN O, SMITH G D, et al. A molecular dynamics simulation study of crystalline 1, 3, 5-triamino-2, 4, 6-trinitrobenzene as a function of pressure and temperature [J]. The Journal of Chemical Physics, 2009, 131(22): 224703. doi: 10.1063/1.3264972
    [23]
    SUN H. COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds [J]. The Journal of Physical Chemistry B, 1998, 102(38): 7338–7364. doi: 10.1021/jp980939v
    [24]
    BUNTE S W, SUN H. Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field [J]. The Journal of Physical Chemistry B, 2000, 104(11): 2477–2489. doi: 10.1021/jp991786u
    [25]
    LONG Y, LIU Y G, NIE F D, et al. The force-field derivation and atomistic simulation of HMX-fluoropolymer mixture explosives [J]. Colloid and Polymer Science, 2012, 290(18): 1855–1866. doi: 10.1007/s00396-012-2705-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(1138) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return