Volume 36 Issue 5
Oct 2022
Turn off MathJax
Article Contents
LIU Feiming, LEI Jianyin, QIAO Li, LIU Zhifang. Crashworthiness Optimization of Horsetail-Bionic Thin-Walled Structures[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054205. doi: 10.11858/gywlxb.20220516
Citation: LIU Feiming, LEI Jianyin, QIAO Li, LIU Zhifang. Crashworthiness Optimization of Horsetail-Bionic Thin-Walled Structures[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054205. doi: 10.11858/gywlxb.20220516

Crashworthiness Optimization of Horsetail-Bionic Thin-Walled Structures

doi: 10.11858/gywlxb.20220516
  • Received Date: 18 Feb 2022
  • Rev Recd Date: 20 May 2022
  • Issue Publish Date: 11 Oct 2022
  • Numerical model of horsetail-bionic thin-walled structure (HBTS) under the lateral impact was constructed using ABAQUS. The effects of wall thickness, inner diameter and number of ribs on the crashworthiness performance and deformation modes were analyzed. The results indicate that the specific energy absorption and peak load of HBTS can be significantly enhanced with the increase of the number of ribs and the overall wall thickness. The changes in the wall thickness of each part significantly affects its deformation mode and crashworthiness performance. Based on the above results, the optimization software modeFRONTIER and the finite element analysis software ABAQUS were integrated to explore the influence of five design parameters, in terms of wall thickness, number of ribs, inner diameter and so on. Finite element models were uniformly distributed on the design space through parametric modeling method, hence the Kriging surrogate models for the specific energy absorption and peak load were established. Then, Pareto front was obtained using Kriging surrogate model-based multi-objective optimization method for the specific energy absorption maximization and peak load minimization simultaneously in one model. Finally, the distribution of each HBTS’s design parameters on Pareto front was analyzed and the optimization results were verified. The method is expected to provide new thoughts for the optimization design of the thin-walled structure.

     

  • loading
  • [1]
    武和全, 毛鸿锋, 侯海彬. 复合材料仿竹薄壁管耐撞性和可靠性研究 [J]. 南京理工大学学报, 2017, 41(2): 186–190, 197.

    WU H Q, MAO H F, HOU H B. Study on crashworthiness and reliability of composite bamboo-like thin-walled tube [J]. Journal of Nanjing University of Science and Technology, 2017, 41(2): 186–190, 197.
    [2]
    ZHAO Z, HUANG W, LI B, et al. Synergistic effects of chiral morphology and reconfiguration in cattail leaves [J]. Journal of Bionic Engineering, 2015, 12(4): 634–642. doi: 10.1016/S1672-6529(14)60153-0
    [3]
    LIU Q, MA J, HE Z, et al. Energy absorption of bio-inspired multi-cell CFRP and aluminum square tubes [J]. Composites Part B: Engineering, 2017, 121: 134–144. doi: 10.1016/j.compositesb.2017.03.034
    [4]
    范晓文, 杨欣, 许述财, 等. 仿骨单位薄壁结构轴向和斜向耐撞性研究 [J]. 载人航天, 2020, 26(2): 142–151. doi: 10.3969/j.issn.1674-5825.2020.02.002

    FAN X W, YANG X, XU S C, et al. Study on crashworthiness of thin-walled structure based on osteon under axial and oblique loads [J]. Manned Spaceflight, 2020, 26(2): 142–151. doi: 10.3969/j.issn.1674-5825.2020.02.002
    [5]
    TSANG H H, RAZA S. Impact energy absorption of bio-inspired tubular sections with structural hierarchy [J]. Composite Structures, 2018, 195: 199–210. doi: 10.1016/j.compstruct.2018.04.057
    [6]
    黄晗, 许述财, 杜雯菁, 等. 基于虾螯结构的仿生薄壁管吸能特性分析及优化 [J]. 北京理工大学学报, 2020, 40(3): 267–274.

    HUANG H, XU S C, DU W J, et al. Energy absorption analysis and optimization of a bionic thin-walled tube based on shrimp chela [J]. Transactions of Beijing Institute of Technology, 2020, 40(3): 267–274.
    [7]
    于鹏山, 刘志芳, 李世强. 新型仿竹薄壁圆管的设计与吸能特性分析 [J]. 高压物理学报, 2021, 35(5): 054205. doi: 10.11858/gywlxb.20210710

    YU P S, LIU Z F, LI S Q. Design and energy absorption characteristic analysis of a new bio-bamboo thin-walled circular tube [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054205. doi: 10.11858/gywlxb.20210710
    [8]
    HUANG J L, DENG X L, LIU W Y. Bionic design of bend-twist coupled thin-walled beam based on the structure of rice stem [J]. Mechanics of Advanced Materials and Structures, 2021: 1–14.
    [9]
    霍鹏, 许述财, 范晓文, 等. 鹿角骨单位仿生薄壁管斜向冲击耐撞性研究 [J]. 爆炸与冲击, 2020, 40(11): 124–135.

    HUO P, XU S C, FAN X W, et al. Oblique impact resistance of a bionic thin-walled tube based on antles osteon [J]. Explosion and Shock Waves, 2020, 40(11): 124–135.
    [10]
    白芳华, 张林伟, 白中浩, 等. 基于甲虫鞘翅的客车八边形仿生多胞薄壁管耐撞性研究 [J]. 振动与冲击, 2019, 38(21): 24–30.

    BAI F H, ZHANG L W, BAI Z H, et al. Crashworthiness of coach’s octagonal bionic mult-cell thin-walled tubes based on beetle elytra [J]. Journal of Vibration and Shock, 2019, 38(21): 24–30.
    [11]
    YIN H F, XIAO Y Y, WEN G L, et al. Crushing analysis and multi-objective optimization design for bionic thin-walled structure [J]. Materials & Design, 2015, 87: 825–834.
    [12]
    XIAO Y Y, YIN H F, FANG H B, et al. Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading [J]. International Journal of Mechanics and Materials in Design, 2016, 12(4): 563–576. doi: 10.1007/s10999-016-9341-6
    [13]
    YIN H F, XIAO Y Y, WEN G L, et al. Multi-objective robust optimization of foam-filled bionic thin-walled structures [J]. Thin-Walled Structures, 2016, 109: 332–343. doi: 10.1016/j.tws.2016.10.011
    [14]
    SUN G Y, TIAN X Y, FANG J G, et al. Dynamical bending analysis and optimization design for functionally graded thickness (FGT) tube [J]. International Journal of Impact Engineering, 2015, 78: 128–137. doi: 10.1016/j.ijimpeng.2014.12.007
    [15]
    尹华伟, 王陈凌, 段金曦, 等. 新型薄壁管耐撞性分析及优化设计 [J]. 高压物理学报, 2021, 35(3): 034202. doi: 10.11858/gywlxb.20200624

    YIN H W, WANG C L, DUAN J X, et al. Crashworthiness analysis and optimization design of new thin-walled tube [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034202. doi: 10.11858/gywlxb.20200624
    [16]
    郝文乾, 卢进帅, 黄睿, 等. 轴向冲击载荷下薄壁折纹管的屈曲模态与吸能 [J]. 爆炸与冲击, 2015, 35(3): 380–385. doi: 10.11883/1001-1455-(2015)03-0380-06

    HAO W Q, LU J S, HUANG R, et al. Buckling and energy absorption properties of thin-walled corrugated tubes under axial impacting [J]. Explosion and Shock Waves, 2015, 35(3): 380–385. doi: 10.11883/1001-1455-(2015)03-0380-06
    [17]
    MEGUID S A, ATTIA M S, MONFORT A. On the crush behaviour of ultralight foam-filled structures [J]. Materials & Design, 2004, 25(3): 183–189.
    [18]
    穆雪峰, 姚卫星, 余雄庆, 等. 多学科设计优化中常用代理模型的研究 [J]. 计算力学学报, 2005, 22(5): 608–612.

    MU X F, YAO W X, YU X Q, et al. A survey of surrogate models used in MDO [J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 608–612.
    [19]
    FANG J G, GAO Y K, SUN G Y, et al. Dynamic crashing behavior of new extrudable multi-cell tubes with a functionally graded thickness [J]. International Journal of Mechanical Sciences, 2015, 103: 63–73. doi: 10.1016/j.ijmecsci.2015.08.029
    [20]
    FU J, LIU Q, LIU-FU K, et al. Design of bionic-bamboo thin-walled structures for energy absorption [J]. Thin-Walled Structures, 2019, 135: 400–413. doi: 10.1016/j.tws.2018.10.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views(158) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return