Volume 36 Issue 4
Jul 2022
Turn off MathJax
Article Contents
YU Wenfeng, LI Jinzhu, YAO Zhiyan, HUANG Fenglei. Mechanical Behaviors and Constitutive Model of Polymide under Quasi-Static and Dynamic Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044101. doi: 10.11858/gywlxb.20210922
Citation: YU Wenfeng, LI Jinzhu, YAO Zhiyan, HUANG Fenglei. Mechanical Behaviors and Constitutive Model of Polymide under Quasi-Static and Dynamic Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044101. doi: 10.11858/gywlxb.20210922

Mechanical Behaviors and Constitutive Model of Polymide under Quasi-Static and Dynamic Compressive Loading

doi: 10.11858/gywlxb.20210922
  • Received Date: 23 Dec 2021
  • Rev Recd Date: 11 Jan 2022
  • Accepted Date: 11 Jan 2022
  • Available Online: 24 Jun 2022
  • Issue Publish Date: 28 Jul 2022
  • To study the mechanical properties of polyimide, quasi-static and dynamic compression experiments were carried out using the materials testing system (material testing system, MTS) and the split Hopkinson pressure bar (SHPB). The stress-strain curves of the material under different strain rates were obtained. The morphology of the recovered specimens was analyzed, and the characteristics of the polyimide in terms of crack form and size deformation were obtained. A bilinear relationship between the dynamic increase factor of the polyimide and the strain rate was obtained. The bilinear characteristics were described by piecewise fitting model and Cowper-Symonds model. Based on the characteristics of the dynamic mechanical response of the polyimide, its compression deformation mechanism from low to high strain-rates was explained. A phenomenological constitutive model in consideration of the contributions of the $\,\beta $-transition was modified to describe the large elastic-plastic deformation response of the material, in which initial viscoelasticity, yield, strain softening and strain hardening were all included. Then the constitutive model’s parameters were fitted by Bayesian approach. The Bayesian fitting results at different strain rates were in good agreement with the experimental data.

     

  • loading
  • [1]
    李敏, 张佐光, 仲伟虹, 等. 聚酰亚胺树脂研究与应用进展 [J]. 复合材料学报, 2000, 17(4): 48–53. doi: 10.3321/j.issn:1000-3851.2000.04.010

    LI M, ZHANG Z G, ZHONG W H, et al. Study and application development of polyimides [J]. Acta Materiae Compositae Sinica, 2000, 17(4): 48–53. doi: 10.3321/j.issn:1000-3851.2000.04.010
    [2]
    汪家铭. 聚酰亚胺薄膜技术进展与市场前景 [J]. 合成技术及应用, 2012, 27(3): 24–29. doi: 10.3969/j.issn.1006-334X.2012.03.011

    WANG J M. Technology advances and market prospects of polyimide film [J]. Synthetic Technology and Application, 2012, 27(3): 24–29. doi: 10.3969/j.issn.1006-334X.2012.03.011
    [3]
    楚晖娟, 朱宝库, 徐又一. 聚酰亚胺泡沫材料在航空航天飞行器中应用进展 [J]. 宇航材料工艺, 2006, 36(3): 1–3. doi: 10.3969/j.issn.1007-2330.2006.03.001

    CHU H J, ZHU B K, XU Y Y. Application of polyimide foam materials in aerospace vehicles [J]. Aerospace Materials & Technology, 2006, 36(3): 1–3. doi: 10.3969/j.issn.1007-2330.2006.03.001
    [4]
    徐立志, 高光发, 赵真, 等. 不同应变率下聚乙烯材料的压缩力学性能 [J]. 爆炸与冲击, 2019, 39(1): 013301.

    XU L Z, GAO G F, ZHAO Z, et al. Compressive mechanical properties of polyethylene at different strain rates [J]. Explosion and Shock Waves, 2019, 39(1): 013301.
    [5]
    WANG J, XU Y J, ZHANG W H. Finite element simulation of PMMA aircraft windshield against bird strike by using a rate and temperature dependent nonlinear viscoelastic constitutive model [J]. Composite Structures, 2014, 108: 21–30. doi: 10.1016/j.compstruct.2013.09.001
    [6]
    张龙辉, 张晓晴, 姚小虎, 等. 高应变率下航空透明聚氨酯的动态本构模型 [J]. 爆炸与冲击, 2015, 35(1): 51–56. doi: 10.11883/1001-1455(2015)01-0051-06

    ZHANG L H, ZHANG X Q, YAO X H, et al. Constitutive model of transparent aviation polyurethane at high strain rates [J]. Explosion and Shock Waves, 2015, 35(1): 51–56. doi: 10.11883/1001-1455(2015)01-0051-06
    [7]
    ROLAND C M, TWIGG J N, VU Y, et al. High strain rate mechanical behavior of polyurea [J]. Polymer, 2007, 48(2): 574–578. doi: 10.1016/j.polymer.2006.11.051
    [8]
    胡文军, 张方举, 田常津, 等. 聚碳酸酯的动态应力应变响应和屈服行为 [J]. 材料研究学报, 2007, 21(4): 439–443. doi: 10.3321/j.issn:1005-3093.2007.04.019

    HU W J, ZHANG F J, TIAN C J, et al. Dynamic stress-strain response and yield behavior of polycarbonate [J]. Chinese Journal of Materials Research, 2007, 21(4): 439–443. doi: 10.3321/j.issn:1005-3093.2007.04.019
    [9]
    CHOU S C, ROBERTSON K D, RAINEY J H. The effect of strain rate and heat developed during deformation on the stress-strain curve of plastics [J]. Experimental Mechanics, 1973, 13(10): 422–432. doi: 10.1007/BF02324886
    [10]
    WALLEY S M, FIELD J E. Strain rate sensitivity of polymers in compression from low to high rates [J]. DYMAT Journal, 1994, 1(3): 211–227.
    [11]
    GOGLIO L, PERONI L, PERONI M, et al. High strain-rate compression and tension behaviour of an epoxy bi-component adhesive [J]. International Journal of Adhesion and Adhesives, 2008, 28(7): 329–339. doi: 10.1016/j.ijadhadh.2007.08.004
    [12]
    于鹏, 姚小虎, 张晓晴, 等. 聚碳酸酯类非晶聚合物力学性能及其本构关系 [J]. 力学进展, 2016, 46(1): 201603. doi: 10.6052/1000-0992-15-016

    YU P, YAO X H, ZHANG X Q, et al. Mechanical behaviors and constitutive models of polycarbonate amorphous polymers [J]. Advances in Mechanics, 2016, 46(1): 201603. doi: 10.6052/1000-0992-15-016
    [13]
    陈春晓, 彭刚, 冯家臣, 等. 聚甲醛动态力学性能及本构行为研究 [J]. 塑料工业, 2018, 46(2): 137–139, 53. doi: 10.3969/j.issn.1005-5770.2018.02.031

    CHEN C X, PENG G, FENG J C, et al. The research of dynamic mechanical properties and constitutive behavior of POM [J]. China Plastics Industry, 2018, 46(2): 137–139, 53. doi: 10.3969/j.issn.1005-5770.2018.02.031
    [14]
    WANG H T, ZHANG Y, HUANG Z G, et al. Experimental and modeling study of the compressive behavior of PC/ABS at low, moderate and high strain rates [J]. Polymer Testing, 2016, 56: 115–123. doi: 10.1016/j.polymertesting.2016.09.027
    [15]
    WANG H T, ZHOU H M, HUANG Z G, et al. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures [J]. Mechanics of Time-Dependent Materials, 2017, 21(1): 97–117. doi: 10.1007/s11043-016-9320-1
    [16]
    王海涛. 聚合物大变形及断裂行为的建模与模拟 [D]. 武汉: 华中科技大学, 2017.

    WANG H T. Modeling and simulation of the large deformation and fracture behavior of polymers [D]. Wuhan: Huazhong University of Science and Technology, 2017.
    [17]
    宋力, 胡时胜. SHPB数据处理中的二波法与三波法 [J]. 爆炸与冲击, 2005, 25(4): 368–373. doi: 10.3321/j.issn:1001-1455.2005.04.014

    SONG L, HU S S. Two-wave and three-wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368–373. doi: 10.3321/j.issn:1001-1455.2005.04.014
    [18]
    LU F Y, LIN Y L, WANG X Y, et al. A theoretical analysis about the influence of interfacial friction in SHPB tests [J]. International Journal of Impact Engineering, 2015, 79: 95–101. doi: 10.1016/j.ijimpeng.2014.10.008
    [19]
    BAUWENS-CROWET C, BAUWENS J C, HOMÈS G. The temperature dependence of yield of polycarbonate in uniaxial compression and tensile tests [J]. Journal of Materials Science, 1972, 7(2): 176–183. doi: 10.1007/BF02403504
    [20]
    JONES N. Structural impact [M]. Cambridge: Cambridge University Press, 1989.
    [21]
    PANCHENKO D. Introduction to probability and statistics [M]. Cambridge: Cambridge University Press, 1980.
    [22]
    BAR-SHALOM Y, LI X R, KIRUBARAJAN T. Estimation with applications to tracking and navigation [M]. New York: Wiley, 2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views(333) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return