Volume 36 Issue 3
May. 2022
Turn off MathJax
Article Contents
CAI Penghui, LI Jinglin, SHEN Zhengxiang, ZHAI Binbin, WU Caibao, HUANG Huandong, SONG Pengfei. Plastic Limit Load and Failure of Accumulator Shell[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034203. doi: 10.11858/gywlxb.20210867
Citation: CAI Penghui, LI Jinglin, SHEN Zhengxiang, ZHAI Binbin, WU Caibao, HUANG Huandong, SONG Pengfei. Plastic Limit Load and Failure of Accumulator Shell[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034203. doi: 10.11858/gywlxb.20210867

Plastic Limit Load and Failure of Accumulator Shell

doi: 10.11858/gywlxb.20210867
  • Received Date: 18 Aug 2021
  • Rev Recd Date: 31 Aug 2021
  • Issue Publish Date: 30 May 2022
  • Structural integrity is an important basis for the design and manufacture of hydraulic accumulator. In order to determine the maximum bearing capacity of an accumulator shell under internal pressure, the plastic limit load and failure location of the shell are studied based on elasto-plastic analysis, numerical simulation and experiments. The results show that the perfect elasto-plastic analysis is obviously higher due to the lack of consideration of the wall thickness. Although the strain strengthening effect is ignored, the calculation result of nonlinear finite element method using step-by-step iteration of load factor is very close to the measured value of the blasting test with an error of only 3.5%, and the predicted plastic failure is consistent with the actual fracture. It shows that the Risk method is more accurate and can be used for the analysis and design of simple thin-walled pressure vessels.

     

  • loading
  • [1]
    涂善东, 轩福贞. 高温承压设备结构完整性技术 [J]. 压力容器, 2005, 22(11): 39–47. doi: 10.3969/j.issn.1001-4837.2005.11.011

    TU S T, XUAN F Z. Structural integrity technology for high temperature pressurized equipment [J]. Pressure Vessel Technology, 2005, 22(11): 39–47. doi: 10.3969/j.issn.1001-4837.2005.11.011
    [2]
    肖飚,杨斌,胡超杰,等. 基于埋入式应变片的纤维缠绕压力容器的健康监测 [J]. 高压物理学报, 2019, 33(4): 043401. doi: 10.11858/gywlxb.20190726

    XIAO B, YANG B, HU C J, et al. Structural health monitoring of filament wound pressure vessel by embedded strain gauges [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043401. doi: 10.11858/gywlxb.20190726
    [3]
    FAUPEL J H. Yield and bursting characteristics of heavy-wall cylinders [J]. ASME Journal of Applied Mechanics, 1956, 23: 1031–1064.
    [4]
    BRABIN T A, CHRISTOPHER T, RAO B N. Bursting pressure of mild steel cylindrical vessels [J]. International Journal of Pressure Vessels and Piping, 2011, 88(2/3): 119–122. doi: 10.1016/j.ijpvp.2011.01.001
    [5]
    ZHENG C X, LEI S H. Research on bursting pressure formula of mild steel pressure vessel [J]. Journal of Zhejiang University: Science A, 2006, 7: 277–281. doi: 10.1631/jzus.2006.AS0277
    [6]
    SVENSSON N. Bursting pressure of cylindrical and spherical vessels [J]. ASME Journal of Applied Mechanics, 1958, 25(80): 89–96.
    [7]
    CHRISTOPHER T, SARMA B, POTTI P, et al. A comparative study on failure pressure estimations of unflawed cylindrical vessels [J]. International Journal of Pressure Vessels and Piping, 2002, 79(1): 53–66. doi: 10.1016/S0308-0161(01)00126-0
    [8]
    BRABIN T A, CHRISTOPHER T, RAO B N. Investigation on failure behavior of unflawed steel cylindrical pressure vessels using FEA [J]. Multidiscipline Modeling in Materials & Structures, 2009, 5(1): 29–42.
    [9]
    CHEN Z F, LI X Y, WANG W, et al. Dynamic burst pressure analysis of cylindrical shells based on average shear stress yield criterion [J]. Thin-Walled Structures, 2020, 148(4): 106498.
    [10]
    DWIVEDI N, KUMAR V, SHRIVASTAVA A, et al. Burst pressure assessment of pressure vessel using finite element analysis: a review [J]. Journal of Pressure Vessel Technology, 2013, 135(4): 044502. doi: 10.1115/1.4023422
    [11]
    EVANS C J, MILLER T F. Failure prediction of pressure vessels using finite element analysis [J]. Journal of Pressure Vessel Technology, 2015, 137(5): 051206. doi: 10.1115/1.4029192
    [12]
    HUANG X, CHEN Y, KAI L, et al. Burst strength analysis of casing with geometrical imperfections [J]. Journal of Pressure Vessel Technology, 2007, 129(4): 763–770. doi: 10.1115/1.2767370
    [13]
    KAMAYA M, SUZUKI T, MESHII T. Failure pressure of straight pipe with wall thinning under internal pressure [J]. International Journal of Pressure Vessels and Piping, 2008, 85(9): 628–634. doi: 10.1016/j.ijpvp.2007.11.005
    [14]
    YASIN K. Burst pressure determination of vehicle toroidal oval cross-section LPG fuel tanks [J]. Journal of Pressure Vessel Technology, 2011, 133(3): 031202. doi: 10.1115/1.4002863
    [15]
    MOUSTABCHIR H, ARBAOUI J, AZARI Z, et al. Experimental/numerical investigation of mechanical behaviour of internally pressurized cylindrical shells with external longitudinal and circumferential semi-elliptical defects [J]. Alexandria Engineering Journal, 2018, 57(3): 1339–1347. doi: 10.1016/j.aej.2017.05.022
    [16]
    张春燕. 承压设备圆柱形筒体壁厚计算方法的选择 [J]. 天然气与石油, 2006, 24(1): 60–63. doi: 10.3969/j.issn.1006-5539.2006.01.017

    ZHANG C Y. Selection of calculation method for wall thickness of cylinder body in pressure equipment [J]. Natural Gas and Oil, 2006, 24(1): 60–63. doi: 10.3969/j.issn.1006-5539.2006.01.017
    [17]
    刘福林. 用加权余量法分析固支圆板和环板在Mises屈服条件下的极限荷载 [J]. 计算力学学报, 2002, 19(3): 369–372. doi: 10.3969/j.issn.1007-4708.2002.03.023

    LIU F L. Calculation of limit loads for circular and annular plates by method of weighted residuals [J]. Chinese Journal of Computational Mechanics, 2002, 19(3): 369–372. doi: 10.3969/j.issn.1007-4708.2002.03.023
    [18]
    姜雅洲. 压力容器爆破压力数值模拟与试验研究 [D]. 杭州: 浙江工业大学, 2015.

    JIANG Y Z. Numerical simulation and experimental study of burst pressure of pressure vessel [D]. Hangzhou: Zhejiang University of Technology, 2015.
    [19]
    陆明万, 寿比南, 杨国义. 压力容器分析设计的塑性分析方法 [J]. 压力容器, 2011, 28(1): 33–39. doi: 10.3969/j.issn.1001-4837.2011.01.007

    LU M W, SHOU B N, YANG G Y. Plastic analysis methods for design by analysis of pressure vessels [J]. Pressure Vessel Technology, 2011, 28(1): 33–39. doi: 10.3969/j.issn.1001-4837.2011.01.007
    [20]
    周波. 基于应变强化的容器爆破压力研究[D]. 南京: 南京工业大学, 2010

    ZHOU B. Study on the burst pressure of vessels based on strain hardening of material [D]. Nanjing: Nanjing University of Technology, 2010.
    [21]
    沈鋆. 极限载荷分析法在压力容器分析设计中的应用 [J]. 石油化工设备, 2011, 40(4): 35–38. doi: 10.3969/j.issn.1000-7466.2011.04.010

    SHEN J. Limit load analysis application in pressure vessel analytical design [J]. Petro-Chemical Equipment, 2011, 40(4): 35–38. doi: 10.3969/j.issn.1000-7466.2011.04.010
    [22]
    刘岑,吴森林,杨帆,等. 超高压容器爆破压力计算公式的精度比较 [J]. 压力容器, 2019, 36(5): 43–49. doi: 10.3969/j.issn.1001-4837.2019.05.007

    LIU C, WU S L, YANG F, et al. Precision comparison of calculation formulas for ultra-high pressure vessel burst pressure [J]. Pressure Vessel Technology, 2019, 36(5): 43–49. doi: 10.3969/j.issn.1001-4837.2019.05.007
    [23]
    徐伟, 迟明, 张宗政. 基于ABAQUS的三通接头应力分析和评定 [J]. 装备制造技术, 2019, 1: 71–73. doi: 10.3969/j.issn.1672-545X.2019.01.018

    XU W, CHI M, ZHANG Z Z. The stress analysis and assessment of the tee based on ABAQUS [J]. Equipment Manufacturing Technology, 2019, 1: 71–73. doi: 10.3969/j.issn.1672-545X.2019.01.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(1459) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return