Volume 35 Issue 3
Jun 2021
Turn off MathJax
Article Contents
ZHAO Hailong, WANG Qiang, KAN Mingxian, XIE Long. Simulation of the Preheating Effects on the Discharging of Magnetized Liner Inertial Fusion[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 033301. doi: 10.11858/gywlxb.20200661
Citation: ZHAO Hailong, WANG Qiang, KAN Mingxian, XIE Long. Simulation of the Preheating Effects on the Discharging of Magnetized Liner Inertial Fusion[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 033301. doi: 10.11858/gywlxb.20200661

Simulation of the Preheating Effects on the Discharging of Magnetized Liner Inertial Fusion

doi: 10.11858/gywlxb.20200661
  • Received Date: 28 Dec 2020
  • Rev Recd Date: 21 Jan 2021
  • Benefiting from laser preheating and axial magnetization, magnetized liner inertial fusion (MagLIF) has great application potential because it can effectively reduce the difficulties to realize the controlled fusion in theory. However, much attention has been paid to the improvement of laser energy deposition efficiency in current research, while the influence of preheating parameters on the MagLIF process and implosion is ignored. For this reason, the one-dimensional integrated simulation code, MIST, is used here to study the preheating effect on the fusion discharging in MagLIF process. Based on the method of parameter scanning, starting from a simple model, the studies of the influences of relevant parameters on implosion results are gradually advanced. The simulation results show that preheating is a necessary condition for the success of MagLIF configuration, and the best preheating time is the moment when the liner is about to compress the fuel. The design principle of preheating is to allow the fuel to acquire as smoothly distributed high temperature as possible, and the central local heating mode is more advantageous when the ignition fails. If the laser is preheated, the shorter pulse width will be better. For driving ability of ZR facility, the optimal liner height is 1.0 cm. These results are not only helpful to understand laser preheating mechanism and effect during MagLIF process, but also providing useful guidance for the design of the detail load parameters of MagLIF configuration.

     

  • loading
  • [1]
    AYMAR R. The ITER project [J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1187–1195. doi: 10.1109/27.650895
    [2]
    SHIMOMURA Y, SPEARS W. Review of the ITER project [J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 1369–1375. doi: 10.1109/TASC.2004.830580
    [3]
    HUANG C J, LI L F. Magnetic confinement fusion: a brief review [J]. Frontiers in Energy, 2018, 12(2): 305–313. doi: 10.1007/s11708-018-0539-1
    [4]
    HURRICANE O A, SPRINGER P T, PATEL P K, et al. Approaching a burning plasma on the NIF [J]. Physics of Plasmas, 2019, 26(5): 052704. doi: 10.1063/1.5087256
    [5]
    MCCRORY R L, MEYERHOFER D D, BETTI R, et al. Progress in direct-drive inertial confinement fusion [J]. Physics of Plasmas, 2008, 15(5): 055503. doi: 10.1063/1.2837048
    [6]
    ROSEN M D. The physics issues that determine inertial confinement fusion target gain and driver requirements: a tutorial [J]. Physics of Plasmas, 1999, 6(4): 1690–1699. doi: 10.1063/1.873427
    [7]
    SLUTZ S A, HERRMANN M C, VESEY R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field [J]. Physics of Plasmas, 2010, 17(5): 056303. doi: 10.1063/1.3333505
    [8]
    HARVEY-THOMPSON A J, GEISSEL M, JENNINGS C A, et al. Constraining preheat energy deposition in maglif experiments with multi-frame shadowgraphy [J]. Physics of Plasmas, 2019, 26(3): 032707. doi: 10.1063/1.5086044
    [9]
    PARADELA J, GARCÍA-RUBIO F, SANZ J. Alpha heating enhancement in MagLIF targets: a simple analytic model [J]. Physics of Plasmas, 2019, 26(1): 012705. doi: 10.1063/1.5079519
    [10]
    PERKINS L J, LOGAN B G, ZIMMERMAN G B, et al. Two-dimensional simulation of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields [J]. Physics of Plasmas, 2013, 20(7): 072708. doi: 10.1063/1.4816813
    [11]
    SLUTZ S A, VESEY R A. High-gain magnetized inertial fusion [J]. Physical Review Letters, 2012, 108(2): 025003. doi: 10.1103/PhysRevLett.108.025003
    [12]
    SEFKOW A B, SLUTZ S A, KONING J M, et al. Design of magnetized liner inertial fusion experiments using the Z facility [J]. Physics of Plasmas, 2014, 21(7): 072711. doi: 10.1063/1.4890298
    [13]
    SLUTZ S A. Magnetized Liner Inertial Fusion (MagLIF): the promise and challenges [C]//Proceedings of MagLIF Workshop. Albuquerque: 2012.
    [14]
    GOMEZ M R, SLUTZ S A, SEFKOW A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion [J]. Physical Review Letters, 2014, 113(15): 155003. doi: 10.1103/PhysRevLett.113.155003
    [15]
    AWE T J, MCBRIDE R D, JENNINGS C A, et al. Observations of modified three-dimensional instability structure for imploding z-pinch liners that are premagnetized with an axial field [J]. Physical Review Letters, 2013, 111(23): 235005. doi: 10.1103/PhysRevLett.111.235005
    [16]
    GOMEZ M P, SLUTZ S A, SEFKOW A B, et al. Recent progress in magnetized liner inertial fusion (MagLIF) experiments [R]. Austin: NNSA, 2015.
    [17]
    SINARS D. Magnetized Liner Inertial Fusion (MagLIF) research at Sandia national laboratories [C]//The 1st Chinese Pulsed Power Society Workshop. Chengdu, 2015.
    [18]
    GEISSEL M, HARVEY-THOMPSON A J, AWE T J, et al. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets [J]. Physics of Plasmas, 2018, 25(2): 022706. doi: 10.1063/1.5003038
    [19]
    DAVIES J R, BAHR R E, BARNAK D H, et al. Laser entrance window transmission and reflection measurements for preheating in magnetized liner inertial fusion [J]. Physics of Plasmas, 2018, 25(6): 062704. doi: 10.1063/1.5030107
    [20]
    SLUTZ S A. On the feasibility of charged particle-beam preheat for MagLIF: SAND 2015-1515R [R]. Albuquerque, USA: Sandia National Laboratories, 2015.
    [21]
    赵海龙, 肖波, 王刚华, 等. 磁化套筒惯性聚变一维集成化数值模拟 [J]. 物理学报, 2020, 69(3): 035203. doi: 10.7498/aps.69.20191411

    ZHAO H L, XIAO B, WANG G H, et al. One-dimensional integrated simulations of magnetized liner inertial fusion [J]. Acta Physica Sinica, 2020, 69(3): 035203. doi: 10.7498/aps.69.20191411
    [22]
    BASKO M M, KEMP A J, MEYER-TER-VEHN J. Ignition conditions for magnetized target fusion in cylindrical geometry [J]. Nuclear Fusion, 2000, 40(1): 59–68. doi: 10.1088/0029-5515/40/1/305
    [23]
    阚明先, 王刚华, 赵海龙, 等. 金属电阻率模型 [J]. 爆炸与冲击, 2013, 33(3): 282–286. doi: 10.11883/1001-1455(2013)03-0282-05

    KAN M X, WANG G H, ZHAO H L, et al. Electrical resistivity model for metals [J]. Explosion and Shock Waves, 2013, 33(3): 282–286. doi: 10.11883/1001-1455(2013)03-0282-05
    [24]
    ZOLLWEG R J, LIEBERMANN R W. Electrical conductivity of nonideal plasmas [J]. Journal of Applied Physics, 1987, 62(9): 3621–3627. doi: 10.1063/1.339265
    [25]
    薛全喜, 江少恩, 王哲斌, 等. 基于神光Ⅲ原型装置开展的激光直接驱动准等熵压缩研究进展 [J]. 物理学报, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159

    XUE Q C, JIANG S E, WANG Z B, et al. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG Ⅲ prototype laser facility [J]. Acta Physica Sinica, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159
    [26]
    JENNINGS C A, CHITTENDEN J P, CUNEO M E, et al. Circuit model for driving three-dimensional resistive MHD wire array Z-pinch calculations [J]. IEEE Transactions on Plasma Science, 2010, 38(4): 529–539. doi: 10.1109/TPS.2010.2042971
    [27]
    MCBRIDE R D, JENNINGS C A, VESEY R A, et al. Displacement current phenomena in the magnetically insulated transmission lines of the refurbished Z accelerator [J]. Physical Review Accelerators and Beams, 2010, 13(12): 120401. doi: 10.1103/PhysRevSTAB.13.120401
    [28]
    SINARS D B, SLUTZ S A, HERRMANN M C, et al. Measurements of Magneto-Rayleigh-Taylor instability growth during the implosion of initially solid al tubes driven by the 20-MA, 100-ns Z facility [J]. Physical Review Letters, 2010, 105(18): 185001. doi: 10.1103/PhysRevLett.105.185001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views(3263) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return