Volume 35 Issue 3
Jun 2021
Turn off MathJax
Article Contents
WU Xiao, MA Yangyang, YANG Shu, HE Kaihua, JI Guangfu. First Principles Study of Lattice Thermal Conductivity and Sound Velocity Characteristics of FeO2 and FeO2He[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 032201. doi: 10.11858/gywlxb.20200659
Citation: WU Xiao, MA Yangyang, YANG Shu, HE Kaihua, JI Guangfu. First Principles Study of Lattice Thermal Conductivity and Sound Velocity Characteristics of FeO2 and FeO2He[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 032201. doi: 10.11858/gywlxb.20200659

First Principles Study of Lattice Thermal Conductivity and Sound Velocity Characteristics of FeO2 and FeO2He

doi: 10.11858/gywlxb.20200659
  • Received Date: 21 Dec 2020
  • Rev Recd Date: 20 Jan 2021
  • Recent experimental studies at high temperature and high pressure reported a new iron oxide, FeO2, which is stable from 74 GPa to the core-mantle boundary (CMB) pressure. Theoretical investigation also indicated that FeO2 can react with He at high temperature and high pressure to form FeO2He, which can explain the enigmatic He reservoir in the Earth. In this work, the lattice thermal conductivities and wave velocities of two minerals have been studied using first principles combined with lattice dynamics method. The calculations show that the lattice thermal conductivity of FeO2He is larger than that of FeO2, meanwhile, and the pressure dependence of lattice thermal conductivity of FeO2He is stronger than that of FeO2. The temperature dependence of lattice thermal conductivity of both minerals is close to T −1 relation, which is similar with those of traditional semiconductor. The group velocities have limited effect on the difference in lattice thermal conductivity between two minerals, and which is determined by the giant discrepancy in the anharmonic scattering rates. The compressive velocity and shear velocity of FeO2He are larger than those of FeO2. Their velocities are smaller than the values of perovskite and post-perovskite at the same condition, which implies that FeO2 and FeO2He are of the character of ultra-low sound velocity in D" layer.

     

  • loading
  • [1]
    OZAWA H, HIROSE K, TATENO S, et al. Phase transition boundary between B1 and B8 structures of FeO up to 210 GPa [J]. Physics of the Earth and Planetary Interiors, 2010, 179(3): 157–163.
    [2]
    BYKOVA E, DUBROVINSKY L, DUBROVINSKAIA N, et al. Structural complexity of simple Fe2O3 at high pressures and temperatures [J]. Nature Communications, 2016, 7: 10661. doi: 10.1038/ncomms10661
    [3]
    WOODLAND A B, FROST D J, TROTS D M, et al. In situ observation of the breakdown of magnetite (Fe3O4) to Fe4O5 and hematite at high pressures and temperatures [J]. American Mineralogist, 2012, 97(10): 1808–1811. doi: 10.2138/am.2012.4270
    [4]
    LAVINA B, DERA P, KIM E, et al. Discovery of the recoverable high-pressure iron oxide Fe4O5 [J]. Proceedings of the National Academy of Sciences, 2011, 108(42): 17281–17285. doi: 10.1073/pnas.1107573108
    [5]
    LAVINA B, MENG Y. Unraveling the complexity of iron oxides at high pressure and temperature: synthesis of Fe5O6 [J]. Science Advances, 2015, 1(5): e1400260.
    [6]
    HU Q, KIM D Y, LIU J, et al. Dehydrogenation of goethite in Earth’s deep lower mantle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(7): 1498–1501. doi: 10.1073/pnas.1620644114
    [7]
    HU Q, KIM D Y, YANG W, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles [J]. Nature, 2016, 534(7606): 241–244. doi: 10.1038/nature18018
    [8]
    BIRCH F. Elasticity and constitution of the Earth’s interior [J]. Journal of Geophysical Research Atmospheres, 1952, 57(2): 227–286. doi: 10.1029/JZ057i002p00227
    [9]
    TERASAKI H, FISCHER R A. Mechanisms and geochemical models of core formation: physics and chemistry of the lower mantle and core [M]. Wiley, 2016:181−190.
    [10]
    LIU J, HU Q, KIM D Y, et al. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones [J]. Nature, 2017, 551(7681): 494–497. doi: 10.1038/nature24461
    [11]
    LIU H, YAO Y, KL UG, DENNIS D. Stable structures of He and H2O at high pressure [J]. Physical Review B, 2015, 91(1): 014102. doi: 10.1103/PhysRevB.91.014102
    [12]
    DONG X, OGANOV A R, GONCHAROV A F, et al. A stable compound of helium and sodium at high pressure [J]. Nature Chemistry, 2017, 9(5): 440–445. doi: 10.1038/nchem.2716
    [13]
    MONSERRAT B, MARTINEZ-CANALES M, NEEDS R J, et al. Helium-iron compounds at terapascal pressures [J]. Physical Review Letters, 2018, 121(1): 015301. doi: 10.1103/PhysRevLett.121.015301
    [14]
    LIU Z, BOTANA J, HERMANN A, et al. Chemistry without chemical bonds: reactivity of He with ionic compounds under high pressure [J]. Nature Communications, 2018, 9(1): 951. doi: 10.1038/s41467-018-03284-y
    [15]
    HART S R, HAURI E H, OSCHMANN L A, et al. Mantle plumes and entrainment: isotopic evidence [J]. Science, 1992, 256(5056): 517–520. doi: 10.1126/science.256.5056.517
    [16]
    JACKSON M G, CARLSON R W, KURZ M D, et al. Evidence for the survival of the oldest terrestrial mantle reservoir [J]. Nature, 2010, 466(7308): 853–856. doi: 10.1038/nature09287
    [17]
    JACKSON M G, KONTER J G, BECKER T W. Primordial helium entrained by the hottest mantle plumes [J]. Nature, 2017, 542(7641): 340–343. doi: 10.1038/nature21023
    [18]
    ZHANG J, LV J, LI H, et al. Rare helium-bearing compound FeO2He stabilized at deep-Earth conditions [J]. Physical Review Letters, 2018, 121(25): 255703. doi: 10.1103/PhysRevLett.121.255703
    [19]
    JANG B G, KIM D Y, SHIM J H. Metal-insulator transition and the role of electron correlation in FeO2 [J]. Physical Review B, 2017, 95(7): 075144. doi: 10.1103/PhysRevB.95.075144
    [20]
    HUANG S Y, SHAN Q, WU X. Elasticity and anisotropy of the pyrite-type FeO2H-FeO2 system in Earth’s lowermost mantle [J]. Journal of Earth Science, 2018: 1293–1301.
    [21]
    LU C, AMSLER M, CHEN C. Unraveling the structure and bonding evolution of the newly discovered iron oxide FeO2 [J]. Physical Review B, 2018, 98(5): 054102. doi: 10.1103/PhysRevB.98.054102
    [22]
    ZHANG X L, NIU Z W, ZHAO Z J, et al. First-principles thermoelasticity and stability of pyrite-type FeO2 under high pressure and temperature [J]. Journal of Alloys and Compounds, 2017, 719: 42–46. doi: 10.1016/j.jallcom.2017.05.143
    [23]
    KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [24]
    CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method [J]. Physical Review Letters, 1980, 45(7): 566–569. doi: 10.1103/PhysRevLett.45.566
    [25]
    KRUKAU A V, VYDROV O A, IZMAYLOV A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals [J]. The Journal of Chemical Physics, 2006, 125(22): 3865.
    [26]
    MONKHORST H J. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 16(4): 1748–1749.
    [27]
    TOGO A, OBA F, TANAKA I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures [J]. Physical Review B, 2008, 78(13): 134106. doi: 10.1103/PhysRevB.78.134106
    [28]
    LI W, CARRETE, KATCHO N, et al. ShengBTE: a solver of the Boltzmann transport equation for phonons [J]. Computer Physics Communications, 2014, 185(6): 1747–1758. doi: 10.1016/j.cpc.2014.02.015
    [29]
    LI W, MINGO N. Lattice dynamics and thermal conductivity of skutterudites CoSb3 and IrSb3 from first principles: why IrSb3 is a better thermal conductor than CoSb3 [J]. Physical Review B, 2014, 90(9): 094302. doi: 10.1103/PhysRevB.90.094302
    [30]
    LI W, MINGO N. Thermal conductivity of fully filled skutterudites: role of the filler [J]. Physical Review B, 2014, 89(18): 184304. doi: 10.1103/PhysRevB.89.184304
    [31]
    SONG Y L, HE K H, SUN J, et al. Effects of iron spin transition on the electronic structure, thermal expansivity and lattice thermal conductivity of ferropericlase: a first principles study [J]. Scientific Reports, 2019, 9(1): 4172. doi: 10.1038/s41598-019-40454-4
    [32]
    OHTA K, YAGI T, HIROSE K, et al. Thermal conductivity of ferropericlase in the Earth’s lower mantle [J]. Earth and Planetary Science Letters, 2017, 465: 29–37. doi: 10.1016/j.jpgl.2017.02.030
    [33]
    DEKURA H, TSUCHIYA T. Ab initio lattice thermal conductivity of MgO from a complete solution of the linearized Boltzmann transport equation [J]. Physical Review B, 2017, 95(18): 184303. doi: 10.1103/PhysRevB.95.184303
    [34]
    OHTA K, YAGI T, TAKETOSHI N, et al. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core-mantle boundary [J]. Earth and Planetary Science Letters, 2012, 349/350: 109–115. doi: 10.1016/j.jpgl.2012.06.043
    [35]
    DEKURA H, TSUCHIYA T. Lattice thermal conductivity of MgSiO3 postperovskite under the lowermost mantle conditions from ab initio anharmonic lattice dynamics [J]. Geophysical Research Letters, 2019, 46(22): 12919–12926. doi: 10.1029/2019GL085273
    [36]
    XU Y Y, SHANKLAND T J, LINHARDT S, et al. Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K [J]. Physics of the Earth and Planetary Interiors, 2004, 143/144: 321–336. doi: 10.1016/j.pepi.2004.03.005
    [37]
    GHADERI N, ZHANG D B, ZHANG H, et al. Lattice thermal conductivity of MgSiO3 perovskite from first principles [J]. Scientific Reports, 2017, 7(1): 5417. doi: 10.1038/s41598-017-05523-6
    [38]
    CARACAS R, COHEN R E. Effect of chemistry on the stability and elasticity of the perovskite and post-perovskite phases in the MgSiO3-FeSiO3-Al2O3 system and implications for the lowermost mantle [J]. Geophysical Research Letters, 2005, 32(16): 367–384.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(3275) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return