Volume 35 Issue 3
Jun 2021
Turn off MathJax
Article Contents
BAI Hui, HUI Hu, YANG Bin, KONG Fang. Mechanical Behavior Analysis of Composite Shell with Fracture Defect[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034205. doi: 10.11858/gywlxb.20200649
Citation: BAI Hui, HUI Hu, YANG Bin, KONG Fang. Mechanical Behavior Analysis of Composite Shell with Fracture Defect[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034205. doi: 10.11858/gywlxb.20200649

Mechanical Behavior Analysis of Composite Shell with Fracture Defect

doi: 10.11858/gywlxb.20200649
  • Received Date: 04 Dec 2020
  • Rev Recd Date: 21 Dec 2020
  • The glass fiber reinforced epoxy resin matrix composite shell was prepared by wet winding, the basic mechanical properties of the composite laminates were evaluated by tensile tests, double cantilever beams and three point end opening bending tests. And then the obtained strength and stiffness parameters were used in the finite element simulation. Meanwhile, a 3D progressive damage finite element model of composite shell containing fracture defects of different depths was established in Abaqus to predict the mechanical response of the shell under internal pressure. The results show that the tensile strength of the composite is (222.7 ± 18) MPa and the main elastic modulus is 39.39 GPa. The fracture toughness of typeⅠand type Ⅱ of interlayer strength are (4.67 ± 0.24)kJ/m2 and (4.98 ± 0.26)kJ/m2, respectively. As the internal pressure increases, Mises stress is increasing. The Mises stress is the largest when the fracture defect is in the deepest layer (the first layer close to the internal pressure, the depth is 18 mm). And when the internal pressure is 0.3 MPa, maximum Mises stress is up to 28.8 MPa, and the circumferential strain is less than the longitudinal strain.

     

  • loading
  • [1]
    陈建良, 童永光. 复合材料在压力容器中的应用 [J]. 压力容器, 2001, 18(6): 47–50. doi: 10.3969/j.issn.1001-4837.2001.06.013

    CHEN J L, TONG Y G. The application of composite materials to pressure vessels [J]. Pressure Vessel Technology, 2001, 18(6): 47–50. doi: 10.3969/j.issn.1001-4837.2001.06.013
    [2]
    HER S C, LIANG Y C. The finite element analysis of composite laminates and shell structures subjected to low velocity impact [J]. Composite Structures, 2004, 66(1/2/3/4): 277–285. doi: 10.1016/j.compstruct.2004.04.049
    [3]
    郑津洋, 傅强, 开方明, 等. 轻质高压贮氢容器的现状及发展趋势 [J]. 太阳能学报, 2004, 25(5): 576–581. doi: 10.3321/j.issn:0254-0096.2004.05.003

    ZHENG J Y, FU Q, KAI F M, et al. The state of art of lightweight high-pressure hydrogen storage tanks [J]. Acta Energiae Solaris Sinica, 2004, 25(5): 576–581. doi: 10.3321/j.issn:0254-0096.2004.05.003
    [4]
    GRIMSLEY B W, CANO R J, JOHNSTON N J, et al. Hybrid composites for LH2 fuel tank structure [C]//33rd International SAMPE Technical Conference. Seattle, WA, 2001: 1224−1235.
    [5]
    MARTINS A T, ABOURA Z, HARIZI W, et al. Structural health monitoring for GFRP composite by the piezoresistive response in the tufted reinforcements [J]. Composite Structures, 2019, 209: 103–111. doi: 10.1016/j.compstruct.2018.10.091
    [6]
    HAN M G, CHANG S H. Failure analysis of a Type Ⅲ hydrogen pressure vessel under impact loading induced by free fall [J]. Composite Structures, 2015, 127: 288–297. doi: 10.1016/j.compstruct.2015.03.027
    [7]
    HALE K F. An optical-fibre fatigue crack-detection and monitoring system [J]. Smart Materials and Structures, 1992, 1: 156–161. doi: 10.1088/0964-1726/1/2/009
    [8]
    GHIMIRE M, WANG C J, DIXON K, et al. In situ monitoring of prestressed concrete using embedded fiber loop ringdown strain sensor [J]. Measurement, 2018, 124: 224–232. doi: 10.1016/j.measurement.2018.04.017
    [9]
    LU Z J, BLAHA F A. A fiber optic strain and impact sensor system for composite materials [C]//Proceedings Volume 1170, Fiber Optic Smart Structures and Skins II. Boston, United States: SPIE, 1989.
    [10]
    赵海涛. 基于光纤传感技术的复合材料结构全寿命健康监测研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    ZHAO H T. Research on whole life health monitoring of composites structure based on fiber optic sensing technology [D]. Harbin: Harbin Institute of Technology, 2008.
    [11]
    TOUGHIRY M. Examination of the nondestructive evaluation of composite gas cylinders [R]. Austin, TX: The Nondestructive Testing Information Analysis Center, 2002.
    [12]
    LEH D, SAFFRÉ P, FRANCESCATO P, et al. A progressive failure analysis of a 700-bar type IV hydrogen composite pressure vessel [J]. International Journal of Hydrogen Energy, 2015, 40(38): 13206–13214. doi: 10.1016/j.ijhydene.2015.05.061
    [13]
    WANG L, ZHENG C X, LUO H Y, et al. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel [J]. Composite Structures, 2015, 134: 475–482. doi: 10.1016/j.compstruct.2015.08.107
    [14]
    LIU P F, ZHENG J Y. Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics [J]. Materials Science and Engineering: A, 2008, 485(1/2): 711–717. doi: 10.1016/j.msea.2008.02.023
    [15]
    杨斌, 章继峰, 周利民. 玻璃纤维-碳纤维混杂增强PCBT复合材料层合板的制备及低速冲击性能 [J]. 复合材料学报, 2015, 32(2): 435–443. doi: 10.13801/j.cnki.fhclxb.201502.004

    YANG B, ZHANG J F, ZHOU L M. Preparation and low-velocity impact properties of glass fiber-carbon fiber hybrid reinforced PCBT composite laminate [J]. Acta Materiae Compositae Sinica, 2015, 32(2): 435–443. doi: 10.13801/j.cnki.fhclxb.201502.004
    [16]
    OKABE Y, TSUJI R, TAKEDA N. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites [J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(1): 59–65. doi: 10.1016/j.compositesa.2003.09.004
    [17]
    肖飚, 杨斌, 胡超杰, 等. 基于埋入式应变片的纤维缠绕压力容器的健康监测 [J]. 高压物理学报, 2019, 33(4): 043401. doi: 10.11858/gywlxb.20190726

    XIAO B, YANG B, HU C J, et al. Structural health monitoring of filament wound pressure vessel by embedded strain gauges [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043401. doi: 10.11858/gywlxb.20190726
    [18]
    KANERVA M, ANTUNES P, SARLIN E, et al. Direct measurement of residual strains in CFRP-tungsten hybrids using embedded strain gauges [J]. Materials and Design, 2017, 127: 352–363. doi: 10.1016/j.matdes.2017.04.008
    [19]
    BAI H, YANG B, HUI H, et al. Experimental and numerical investigation of the strain response of the filament wound pressure vessels subjected to pressurization test [J]. Polymer Composites, 2019, 40(11): 4427–4441. doi: 10.1002/pc.25304
    [20]
    ALSHAHRANI R F, MERAH N, KHAN S M A, et al. On the impact-induced damage in glass fiber reinforced epoxy pipes [J]. International Journal of Impact Engineering, 2016, 97: 57–65. doi: 10.1016/j.ijimpeng.2016.06.002
    [21]
    YANG B, HE L, GAO Y. Simulation on impact response of FMLs: effect of fiber stacking sequence, thickness, and incident angle [J]. Science and Engineering of Composite Materials, 2018, 25(3): 621–631. doi: 10.1515/secm-2016-0226
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(3986) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return