Volume 34 Issue 5
Sep 2020
Turn off MathJax
Article Contents
HOU Ling, SHEN Weixia, FANG Chao, ZHANG Zhuangfei, ZHANG Yuewen, WANG Qianqian, CHEN Liangchao, JIA Xiaopeng. High Thermal Conductivity of Diamond/Al Composites via High Pressure and High Temperature Sintering[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 053101. doi: 10.11858/gywlxb.20200514
Citation: HOU Ling, SHEN Weixia, FANG Chao, ZHANG Zhuangfei, ZHANG Yuewen, WANG Qianqian, CHEN Liangchao, JIA Xiaopeng. High Thermal Conductivity of Diamond/Al Composites via High Pressure and High Temperature Sintering[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 053101. doi: 10.11858/gywlxb.20200514

High Thermal Conductivity of Diamond/Al Composites via High Pressure and High Temperature Sintering

doi: 10.11858/gywlxb.20200514
  • Received Date: 24 Feb 2020
  • Rev Recd Date: 03 Mar 2020
  • Diamond/aluminum composites with a high thermal conductivity of 529 W/(m·K) were prepared using pure aluminum as the matrix and 50 vol.% Ti-coated 200 μm diamond as the filling material within10 min by high temperature (700 ℃) and high pressure (3 GPa) powder metallurgy method. The morphology and properties of Ti-coated diamond were characterized by optical microscope and X-ray diffraction. The properties of the prepared diamond/aluminum composite were tested by laser thermal diffusion instrument, scanning electron microscope and thermal expansion instrument. It is found that the Ti-coating diamond prepared by spark plasma sintering is mainly composed of titanium and a small amount of titanium carbide. Compared with raw diamond under the same preparation conditions, the Ti-coated diamond could effectively improve the thermal conductivity of diamond/aluminum composites. Meanwhile, the high temperature and high pressure method can be used to prepare the full density of diamond/aluminum composites, which can effectively improve the interface bonding between aluminum matrix and diamond particles, reduce the interface spaces and effectively improve the thermal conductivity of composites. Compared with the conventional methods such as vacuum hot pressing, spark plasma sintering and gas pressure infiltration, the sample preparation period of high temperature and high pressure powder metallurgy is short (several minutes). This research is helpful to expand the preparation method of high thermal conductivity composites, expand the product types of domestic six-sided top press, and provide technical support for the preparation of other metal matrix thermal conductive composites.

     

  • loading
  • [1]
    MOORE A L, SHI L. Emerging challenges and materials for thermal management of electronics [J]. Materials Today, 2014, 17(4): 163–174. doi: 10.1016/j.mattod.2014.04.003
    [2]
    ZWEBEN C. Advances in composite materials for thermal management in electronic packaging [J]. JOM, 1998, 50(6): 47–51. doi: 10.1007/s11837-998-0128-6
    [3]
    JOHNSON W B, SONUPARLAK B. Diamond/Al metal matrix composites formed by the pressureless metal infiltration process [J]. Journal of Materials Research, 1993, 8(5): 1169–1173. doi: 10.1557/JMR.1993.1169
    [4]
    YANG W L, PENG K, ZHOU L P, et al. Finite element simulation and experimental investigation on thermal conductivity of diamond/aluminium composites with imperfect interface [J]. Computational Materials Science, 2014, 83: 375–380. doi: 10.1016/j.commatsci.2013.11.059
    [5]
    ABYZOV A M, KIDALOV S V, SHAKHOV F M. High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application [J]. Applied Thermal Engineering, 2012, 48: 72–80. doi: 10.1016/j.applthermaleng.2012.04.063
    [6]
    HE J S, WANG X T, ZHANG Y, et al. Thermal conductivity of Cu–Zr/diamond composites produced by high temperature-high pressure method [J]. Composites Part B: Engineering, 2015, 68: 22–26. doi: 10.1016/j.compositesb.2014.08.023
    [7]
    MA S D, ZHAO N Q, SHI C S, et al. Mo2C coating on diamond: different effects on thermal conductivity of diamond/Al and diamond/Cu composites [J]. Applied Surface Science, 2017, 402: 372–383. doi: 10.1016/j.apsusc.2017.01.078
    [8]
    TAN Z Q, LI Z Q, FAN G L, et al. Fabrication of diamond/aluminum composites by vacuum hot pressing: process optimization and thermal properties [J]. Composites Part B: Engineering, 2013, 47: 173–180. doi: 10.1016/j.compositesb.2012.11.014
    [9]
    MIZUUCHI K, INOUE K, AGARI Y, et al. Bimodal and monomodal diamond particle effect on the thermal properties of diamond-particle-dispersed Al-matrix composite fabricated by SPS [J]. Microelectronics Reliability, 2014, 54(11): 2463–2470. doi: 10.1016/j.microrel.2014.04.006
    [10]
    CHE Z F, WANG Q X, WANG L H, et al. Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration [J]. Composites Part B: Engineering, 2017, 113: 285–290. doi: 10.1016/j.compositesb.2017.01.047
    [11]
    ZHANG Y, LI W J, ZHAO L L, et al. Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure [J]. Journal of Materials Science, 2015, 50(2): 688–696. doi: 10.1007/s10853-014-8628-y
    [12]
    FANG C, SHEN W X, ZHANG Y W, et al. Si doping effects on the growth of large single-crystal diamond in a Ni-based metal catalyst system under high pressure and high temperature [J]. Crystal Growth & Design, 2019, 19(7): 3955–3961. doi: 10.1021/acs.cgd.9b00355
    [13]
    ZHANG Z F, JIA X P, LIU X B, et al. Synthesis and characterization of a single diamond crystal with a high nitrogen concentration [J]. Chinese Physics B, 2012, 21(3): 038103. doi: 10.1088/1674-1056/21/3/038103
    [14]
    FANG C, ZHANG Y W, SHEN W X, et al. Synthesis and characterization of HPHT large single-crystal diamonds under the simultaneous influence of oxygen and hydrogen [J]. CrystEngComm, 2017, 19(38): 5727–5734. doi: 10.1039/C7CE01349C
    [15]
    CHANG R, ZANG J B, WANG Y H, et al. Study of Ti-coated diamond grits prepared by spark plasma coating [J]. Diamond and Related Materials, 2017, 77: 72–78. doi: 10.1016/j.diamond.2017.06.004
    [16]
    EKIMOVE A, SUETIN N V, POPOVICH A F, et al. Thermal conductivity of diamond composites sintered under high pressures [J]. Diamond and Related Materials, 2008, 17(4/5): 838–843. doi: 10.1016/j.diamond.2007.12.051
    [17]
    KIDALOV S V, SHAKHOV F M, VUL A Y. Thermal conductivity of sintered nanodiamonds and microdiamonds [J]. Diamond and Related Materials, 2008, 17(4/5): 844–847. doi: 10.1016/j.diamond.2008.01.091
    [18]
    EKIMOVE A, SUETINN V, POPOVICH A F, et al. Effect of microstructure and grain size on the thermal conductivity of high-pressure-sintered diamond composites [J]. Inorganic Materials, 2008, 44(3): 224–229. doi: 10.1134/S0020168508030035
    [19]
    YOSHIDA K, MORIGAMI H. Thermal properties of diamond/copper composite material [J]. Microelectronics Reliability, 2004, 44(2): 303–308. doi: 10.1016/S0026-2714(03)00215-4
    [20]
    HE J S, ZHANG H L, ZHANG Y, et al. Effect of boron addition on interface microstructure and thermal conductivity of Cu/diamond composites produced by high temperature-high pressure method [J]. Physica Status Solidi A, 2014, 211(3): 587–594. doi: 10.1002/pssa.201330237
    [21]
    CHEN H, JIA C C, LI S J. Effect of sintering parameters on the microstructure and thermal conductivity of diamond/Cu composites prepared by high pressure and high temperature infiltration [J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(2): 180–186. doi: 10.1007/s12613-013-0711-x
    [22]
    CHU K, JIA C C, LIANG X B, et al. Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance [J]. Materials & Design, 2009, 30(10): 4311–4316. doi: 10.1016/j.matdes.2009.04.019
    [23]
    LIANG X B, JIA C C, CHU K, et al. Thermal conductivity and microstructure of Al/diamond composites with Ti-coated diamond particles consolidated by spark plasma sintering [J]. Journal of Composite Materials, 2012, 46(9): 1127–1136. doi: 10.1177/0021998311413689
    [24]
    YAMAMOTO Y, IMAI T, TANABE K, et al. The measurement of thermal properties of diamond [J]. Diamond and Related Materials, 1997, 6(8): 1057–1061. doi: 10.1016/S0925-9635(96)00772-8
    [25]
    TWITCHEN D J, PICKLES C S J, COE S E, et al. Thermal conductivity measurements on CVD diamond [J]. Diamond and Related Materials, 2001, 10(3/4/5/6/7): 731–735. doi: 10.1016/S0925-9635(00)00515-X
    [26]
    STONER R J, MARIS H J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K [J]. Physical Review B, 1993, 48(22): 16373–16387. doi: 10.1103/PhysRevB.48.16373
    [27]
    王平平. 金刚石/铝复合材料的界面结构与导热性能 [D]. 哈尔滨: 哈尔滨工业大学, 2017.

    WANG P P. Interface microstructure and thermal properties of diamond particles reinforced Al matrix composites [D]. Harbin: Harbin Institute of Technology, 2017.
    [28]
    刘永正. 金刚石/铝复合材料影响因素研究 [J]. 超硬材料工程, 2009, 21(5): 15–17. doi: 10.3969/j.issn.1673-1433.2009.05.005

    LIU Y Z. Research on influencing factors of diamond-aluminium composites [J]. Superhard Material Engineering, 2009, 21(5): 15–17. doi: 10.3969/j.issn.1673-1433.2009.05.005
    [29]
    郭静, 孙久娜, 孙璐, 等. 铝-金刚石双相连续导热复合材料的制备 [J]. 粉末冶金工业, 2010, 20(3): 17–20. doi: 10.3969/j.issn.1006-6543.2010.03.004

    GUO J, SUN J N, SUN L, et al. Preparation of Al/diamond composite with consecutive phases [J]. Powder Metallurgy Industry, 2010, 20(3): 17–20. doi: 10.3969/j.issn.1006-6543.2010.03.004
    [30]
    刘永正, 崔岩. 超高导热金刚石/铝复合材料研究 [C]//第七届中国功能材料及其应用学术会议论文集. 长沙: 中国仪器仪表学会, 2010: 439–441.
    [31]
    ARAI S, UEDA M. Fabrication of high thermal conductivity Cu/diamond composites at ambient temperature and pressure [J]. AIP Advances, 2019, 9(8): 085309. doi: 10.1063/1.5111416
    [32]
    王新宇, 于家康, 朱晓敏. 镀TiC金刚石/铝复合材料的热膨胀性能 [J]. 特种铸造及有色合金, 2011, 31(11): 1046–1049. doi: 10.3870/tzzz.2011.11.019

    WANG X Y, YU J K, ZHU X M. Thermal expansion behevior of TiC-coated diamond/Al composites [J]. Special Casting & Nonferrous Alloys, 2011, 31(11): 1046–1049. doi: 10.3870/tzzz.2011.11.019
    [33]
    王一鸣. 金刚石/铝复合材料性能及其影响因素研究 [D]. 北京: 北方工业大学, 2019.

    WANG Y M. Research on properties and influencing factors of diamond/aluminum composites [D]. Beijing: North China University of Technology, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(6084) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return