Volume 34 Issue 5
Sep 2020
Turn off MathJax
Article Contents
YAN Dong, WANG Genwei, SONG Hui, WANG Bin. Numerical Simulation of Radial Impact on Sunflower-Like Sandwich Cylindrical Shell[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858
Citation: YAN Dong, WANG Genwei, SONG Hui, WANG Bin. Numerical Simulation of Radial Impact on Sunflower-Like Sandwich Cylindrical Shell[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858

Numerical Simulation of Radial Impact on Sunflower-Like Sandwich Cylindrical Shell

doi: 10.11858/gywlxb.20190858
  • Received Date: 18 Nov 2019
  • Rev Recd Date: 28 Nov 2019
  • Because of their excellent lightness and crashworthiness, metal thin-walled structures have been widely used in the collision kinetic energy dissipation system of vehicles such as automobiles, airplanes and trains. In this paper, the deformation mode, energy absorption capacity, specific energy absorption and average compression force of sunflower thin-wall sandwich structure under radial impact load in two directions are studied. The results show that the wall thickness, the number of petals, the loading speed and the loading direction of the thin-wall sandwich structure of sunflower have certain effects on the impact resistance of the structure. Under the condition of constant mass, with the increase of the thickness of the outer shell, the energy absorption efficiency of the thin-walled structure under the tip pressure is reduced. The specific energy absorption under gap side pressure was 44.6% higher than that under tip side pressure. With the change of the number of petals, the energy absorption efficiency of thin-walled metal structure has an optimal value.

     

  • loading
  • [1]
    ALEXANDER J. An approximate analysis of the collapse of thin cylindrical shells under axial loading [J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1): 10–15. doi: 10.1093/qjmam/13.1.10
    [2]
    WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics, 1983, 50(4a): 727–734. doi: 10.1115/1.3167137
    [3]
    GUPTA N, PRASAD G E, GUPTA S. Plastic collapse of metallic conical frusta of large semi-apical angles [J]. International Journal of Crash Worthiness, 1997, 2(4): 349–366. doi: 10.1533/cras.1997.0054
    [4]
    HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static crushing of square aluminium extrusions with aluminium foam filler [J]. International Journal of Mechanical Sciences, 1999, 41(8): 967–993. doi: 10.1016/S0020-7403(98)00064-2
    [5]
    HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler [J]. International Journal of Impact Engineering, 2000, 24(5): 475–507. doi: 10.1016/S0734-743X(99)00170-0
    [6]
    赵凯, 卢国兴, 沈建虎, 等. 圆环列系统吸能特性研究 [J]. 北京大学学报, 2007, 65(3): 312–316.

    ZHAO K, LU G X, SHEN J H, et al. Energy absorption characteristics of ring train system [J]. Journal of Peking University, 2007, 65(3): 312–316.
    [7]
    NAJAFI A, RAIS-ROHANI M. Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes [J]. Thin-Walled Structures, 2011, 49(1): 1–12. doi: 10.1016/j.tws.2010.07.002
    [8]
    李志斌, 虞吉林, 郭刘伟. 具有诱导结构的铝合金薄壁方管轴向压缩吸能性能试验研究 [J]. 工程力学, 2012, 29(6): 346–352. doi: 10.6052/j.issn.1000-4750.2010.09.0663

    LI Z B, YU J L, GUO L W. Experimental study on energy absorption performance of aluminum alloy thin-walled square tube with induced structure in axial compression [J]. Engineering Mechanics, 2012, 29(6): 346–352. doi: 10.6052/j.issn.1000-4750.2010.09.0663
    [9]
    杨鹏飞. 波纹夹芯板和结构的压缩与冲击吸能特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2013.

    YANG P F. Study on compression and impact energy absorption characteristics of corrugated sandwich plates and structures [D]. Harbin: Harbin Engineering University, 2013.
    [10]
    陈亦涛, 王帅, 刘凯欣. 径向冲击载荷下金属圆环系统的动态吸能特性 [C]//中国力学会第19届学术年会. 北京, 2013.
    [11]
    于渤, 张钱城, 金峰, 等. 泡沫铝填充波纹板的动态压缩性能研究 [C]//中国力学大会-2013. 西安, 2013.
    [12]
    TARLOCHAN F, SAMER F, HAMOUDA A M S, et al. Design of thin wall structures for energy absorption applications: enhancement of crashworthiness due to axial and oblique impact forces [J]. Thin-Walled Structures, 2013, 71: 7–17. doi: 10.1016/j.tws.2013.04.003
    [13]
    杨彬彬, 赵修平. 多胞金属管受径向冲击时的吸能特性 [J]. 海军航空工程学院学报, 2014, 29(6): 552–556. doi: 10.7682/j.issn.1673-1522.2014.06.010

    YANG B B, ZHAO X P. Energy absorption characteristics of polycellular metal tube subjected to radial impact [J]. Journal of Naval Aeronautical Engineering College, 2014, 29(6): 552–556. doi: 10.7682/j.issn.1673-1522.2014.06.010
    [14]
    WANG J, ZHANG Y, HE N, et al. Crashworthiness behavior of Koch fractal structures [J]. Materials & Design, 2018, 144: 229–244.
    [15]
    韩宾. 波纹强化复合型多孔材料的力学行为研究 [D]. 西安: 西安交通大学, 2018.

    HAN B. Study on mechanical behavior of corrugated reinforced composite porous materials [D]. Xi’an: Xi’an Jiaotong University, 2018.
    [16]
    NGOC S H, LU G X, XIANG X M. Energy absorption of a bio-inspired honeycomb sandwich panel [J]. Journal of Materials Science, 2019, 54(8): 6286–6300. doi: 10.1007/s10853-018-3163-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views(6948) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return