Volume 34 Issue 4
Jul 2020
Turn off MathJax
Article Contents
LI Yuyan, JIANG Rongpei, LI Zhipeng, XU Sen, PAN Feng, XIE Lifeng. Detonation and Quenching Characteristics of Premixed C2H4/N2O[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 045201. doi: 10.11858/gywlxb.20190845
Citation: LI Yuyan, JIANG Rongpei, LI Zhipeng, XU Sen, PAN Feng, XIE Lifeng. Detonation and Quenching Characteristics of Premixed C2H4/N2O[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 045201. doi: 10.11858/gywlxb.20190845

Detonation and Quenching Characteristics of Premixed C2H4/N2O

doi: 10.11858/gywlxb.20190845
  • Received Date: 17 Dec 2019
  • Rev Recd Date: 05 Jan 2020
  • The detonation and the flame quenching properties of premixed gas C2H4/N2O in the combustion channels were studied experimentally using a self-developed flame propagation experiment. The results show that the premixed gas achieves the transition from deflagration to detonation in all the PMMA channels with the diameters of 5 mm, 10 mm and 15 mm, and the flame speed and acceleration rate decreased gradually with the increase of the channel diameter. 2.4% CO2 (mass fraction) diluent flame undergoes a process of stable combustion at the initial stage. The steady detonation speed and pressure are 2 207 m/s and 3.92 MPa, respectively, which are consistent with the theoretical values. The critical quenching diameter is 0.5–0.7 mm. The higher the propagation speed of the flame, the larger the channel diameter, the more difficult the flame quenching. According to the relationship between quenching diameter, turbulent flame velocity and quenching distance, the length of the flame arresters passageway length is calculated, which provides a reference for designing flashback arresters.

     

  • loading
  • [1]
    朱成财, 韩伟, 于忻立, 等. 氧化亚氮基单元复合推进剂技术研究述评 [J]. 火箭推进, 2016, 42(2): 79–85. doi: 10.3969/j.issn.1672-9374.2016.02.015

    ZHU C C, HAN W, YU X L, et al. Review of nitrous-oxide-based composite monopropellants technology [J]. Journal of Rocket Propulsion, 2016, 42(2): 79–85. doi: 10.3969/j.issn.1672-9374.2016.02.015
    [2]
    宋长青, 徐万武, 张家奇, 等. 氧化亚氮推进技术研究进展 [J]. 火箭推进, 2014, 40(2): 7–15. doi: 10.3969/j.issn.1672-9374.2014.02.002

    SONG C Q, XU W W, ZHANG J Q, et al. Research progress of nitrous oxide propulsion technology [J]. Journal of Rocket Propulsion, 2014, 40(2): 7–15. doi: 10.3969/j.issn.1672-9374.2014.02.002
    [3]
    MUNGAS G, VOZOFF M, RISHIKOF B. NOFBXTM: a new non-toxic, “green” propulsion technology with high performance and low cost [C]//63rd International Astronautical Congress. Naples, Italy, 2012.
    [4]
    GOHARDANI A S, STANOJEV J, DEMAIRE A, et al. Green space propulsion: opportunities and prospects [J]. Progress in Aerospace Sciences, 2014, 71: 128–149. doi: 10.1016/j.paerosci.2014.08.001
    [5]
    ROY G D, FROLOV S M, BORISOV A A. Pulse detonation propulsion: challenges, current status, and future perspective [J]. Progress in Energy and Combustion Science, 2004, 30(6): 545–672. doi: 10.1016/j.pecs.2004.05.001
    [6]
    WERLINGY L, LAUCK F, FREUDENMANN D, et al. Experimental investigation of the ignition, flame propagation and flashback behavior of a premixed green propellant consisting of N2O and C2H4 [J]. Journal of Energy and Power Engineering, 2017, 11: 735–752.
    [7]
    MUSCAT V I, DENTON M B, SUDDENDORF R F. A Flashback-resistant burner for use with the nitrous oxide-acetylene flame [J]. Spectroscopy Letters, 1973, 6(9): 563–567. doi: 10.1080/00387017308060845
    [8]
    GIBBON D, BAKER A, NICOLINI D, et al. The design, development and in-flight performance of a low power resistojet thruster [C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, Alabama, 2003.
    [9]
    VENKATESH P B, D’ENTREMONT J, MEYER S E, et al. High-pressure combustion and deflagration-to-detonation transition in ethylene/nitrous oxide mixtures [C]//8th U.S. National Combustion Meeting. Park City, Utah, 2013: 158–165.
    [10]
    VENKATESH P B, GRAZIANO T J, BANE S P M, et al. Deflagration-to-detonation transition in nitrous oxide-ethylene mixtures and its application to pulsed propulsion systems [C]//55th AIAA Aerospace Sciences Meeting. Grapevine, TX, 2017: 0372.
    [11]
    WERLING L K, HOCHHEIMER B, BARAL A L, et al. Experimental and numerical analysis of the heat flux occurring in a nitrous oxide/ethene green propellant combustion demonstrator [J]. Journal of the American College of Surgeons, 2013, 186(5): 562–569.
    [12]
    HOCHHEIMER B, PERAKIS N, WERLING L, et al. Test facilities to assess properties of a nitrous oxide/ethene premixed bipropellant for satellite propulsion system [C]//5th CEAS Air & Space Conference. Delft, The Netherlands, 2014.
    [13]
    ZHANG B, LIU H, WANG C. Detonation velocity behavior and scaling analysis for ethylene-nitrous oxide mixture [J]. Applied Thermal Engineering, 2017, 127: 671–678. doi: 10.1016/j.applthermaleng.2017.08.016
    [14]
    MOVILEANU C, RAZUS D, MITU M, et al. Explosion of C2H4-N2O-N2 in elongated closed vessels [C]//7th European Combustion Meeting. Budapest, Hungary, 2015.
    [15]
    POWELL O A, PAPAS P, DREYER C. Laminar burning velocities for hydrogen-, methane-, acetylene-, and propane-nitrous oxide flames [J]. Combustion Science & Technology, 2009, 181(7): 917–936.
    [16]
    李智鹏, 孙海云, 蒋榕培, 等. 乙烯-氧化亚氮层流预混燃烧过程研究 [J]. 火箭推进, 2018, 44(5): 37–42. doi: 10.3969/j.issn.1672-9374.2018.05.006

    LI Z P, SUN H Y, JIANG R P, et al. Study on premixed laminar combustion process of ethylene/nitrous oxide mixture [J]. Journal of Rocket Propulsion, 2018, 44(5): 37–42. doi: 10.3969/j.issn.1672-9374.2018.05.006
    [17]
    NEWMAN-LEHMAN T, GRANA R, SESHADRI K, et al. The structure and extinction of nonpremixed methane/nitrous oxide and ethane/nitrous oxide flames [J]. Proceedings of the Combustion Institute, 2013, 34(2): 2147–2153. doi: 10.1016/j.proci.2012.05.102
    [18]
    程关兵, 李俊仙, 李书明, 等. 氢气/丙烷/空气预混气体爆轰性能的实验研究 [J]. 爆炸与冲击, 2015, 35(2): 249–252. doi: 10.11883/1001-1455(2015)02-0249-06

    CHENG G B, LI J X, LI S M, et al. An experimental study on detonation characteristics of binary fuels hydrogen/propane-air mixtures [J]. Explosion and Shock Waves, 2015, 35(2): 249–252. doi: 10.11883/1001-1455(2015)02-0249-06
    [19]
    张博, 白春华. H2-O2/Air直接起爆形成爆轰临界能量的预测模型 [J]. 高压物理学报, 2013, 27(5): 719–724. doi: 10.11858/gywlxb.2013.05.010

    ZHANG B, BAI C H. Theoretical prediction model of critical energy for direct detonation initiation in H2-O2/air mixtures [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 719–724. doi: 10.11858/gywlxb.2013.05.010
    [20]
    王鲁庆, 马宏昊, 王波, 等. 氢气/甲烷-空气爆轰波在含环形障碍物圆管内传播的试验研究 [J]. 高压物理学报, 2018, 32(3): 035203. doi: 10.11858/gywlxb.20170687

    WANG L Q, MA H H, WANG B, et al. Detonation propagation in hydrogen/methane-air mixtures in a round tube filled with orifice plates [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035203. doi: 10.11858/gywlxb.20170687
    [21]
    WU M H, BURKE M P, SON S F, et al. Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2429–2436. doi: 10.1016/j.proci.2006.08.098
    [22]
    WANG C, HUANG F L, ADDAI E K, et al. Effect of concentration and obstacles on flame velocity and overpressure of methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 302–310. doi: 10.1016/j.jlp.2016.05.021
    [23]
    ALIOU S, ASHWIN C, ABDELLAH H. Mean structure of one-dimensional unstable detonations with friction [J]. Journal of Fluid Mechanics, 2014, 743(3): 503–533.
    [24]
    路长, 李毅, 潘荣锟. 管道截面对氢气/空气预混爆炸影响的实验研究 [J]. 火灾科学, 2015, 24(2): 68–74. doi: 10.3969/j.issn.1004-5309.2015.02.02

    LU C, LI Y, PAN R K. Experimental study of the duct cross section effects on the hydrogen/air premixed explosion [J]. Fire Safety Science, 2015, 24(2): 68–74. doi: 10.3969/j.issn.1004-5309.2015.02.02
    [25]
    王成, 韩文虎, 宁建国. 边界层和障碍物对湍流火焰加速机理的研究 [C]//第十五届全国激波与激波管学术会议. 杭州, 2012.
    [26]
    LIU F, GUO H, SMALLWOOD G J. The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames [J]. Combustion and Flame, 2003, 133(4): 495–497. doi: 10.1016/S0010-2180(03)00019-1
    [27]
    PARK J, LEE K, LEE E. Effects of CO2 addition on flame structure in counter flow diffusion flame of H2/CO2/N2 fuel [J]. International Journal of Hydrogen Energy, 2001, 25(6): 469–485.
    [28]
    PARK J, HWANG D, CHOI J, et al. Chemical effects of CO2 addition to oxidizer and fuel streams on flame structure in H2-O2 counter flow diffusion flames [J]. International Journal of Energy Research, 2003, 27(13): 1205–1220. doi: 10.1002/er.946
    [29]
    POWELL O, PAPAS P. Flame structure measurements of nitric oxide in hydrocarbon-nitrous-oxide flames [J]. Journal of Propulsion & Power, 2015, 28(5): 1052–1059.
    [30]
    李猛, 王宏, 陈雪莉. 复杂化学平衡应用计算程序 [J]. 兵器装备工程学报, 2010, 31(9): 132–134. doi: 10.3969/j.issn.1006-0707.2010.09.043
    [31]
    BABKIN V S. Filtrational combustion of gases. Present state of affairs and prospects [J]. Pure & Applied Chemistry, 1993, 65(2): 335–344.
    [32]
    KELLENBERGER M, CICCARELLI G. Advancements on the propagation mechanism of a detonation wave in an obstructed channel [J]. Combustion and Flame, 2018, 191: 195–209. doi: 10.1016/j.combustflame.2017.12.023
    [33]
    LIBERMAN M A, IVANOV M F, KIVERIN A D, et al. Deflagration-to-detonation transition in highly reactive combustible mixtures [J]. Acta Astronautica, 2010, 67(7/8): 688–701.
    [34]
    CHAKRAVARTHII D M K, DEVARAJAN M, SUBRAMANI S. Experimental and numerical investigation of pressure drop and heat transfer coeffcient in converging-diverging microchannel heat sink [J]. Heat and Mass Transfer, 2017, 53(7): 2265–2277. doi: 10.1007/s00231-017-1978-7
    [35]
    FAN A, WAN J, LIU Y, et al. Effect of bluff body shape on the blow-off limit of hydrogen/air flame in a planar micro-combustor [J]. Applied Thermal Engineering, 2014, 62(1): 13–19. doi: 10.1016/j.applthermaleng.2013.09.010
    [36]
    YANG S, SHY S. Global quenching of premixed CH4/air flames: effects of turbulent straining, equivalence ratio, and radiative heat loss [J]. Proceedings of the Combustion Institute, 2002, 29(2): 1841–1847. doi: 10.1016/S1540-7489(02)80223-1
    [37]
    YANG W, DENG C, ZHOU J, et al. Experimental and numerical investigations of hydrogen-air premixed combustion in a converging-diverging micro tube [J]. International Journal of Hydrogen Energy, 2014, 39(7): 3469–3476. doi: 10.1016/j.ijhydene.2013.12.102
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(7012) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return