Volume 34 Issue 1
Jan 2020
Turn off MathJax
Article Contents
HU Liangliang, HUANG Ruiyuan, LI Shichao, QIN Jian, WANG Jinxiang, RONG Guang. Shock Wave Simulation of Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015102. doi: 10.11858/gywlxb.20190773
Citation: HU Liangliang, HUANG Ruiyuan, LI Shichao, QIN Jian, WANG Jinxiang, RONG Guang. Shock Wave Simulation of Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015102. doi: 10.11858/gywlxb.20190773

Shock Wave Simulation of Underwater Explosion

doi: 10.11858/gywlxb.20190773
  • Received Date: 10 May 2019
  • Rev Recd Date: 28 May 2019
  • The state equation of water, artificial viscosity coefficient and mesh size have a great influence on the numerical results of underwater explosion shock wave. In order to improve the simulation accuracy of underwater explosion shock wave, the peak pressure and specific impulse of the conventional TNT explosive underwater explosion are taken as the measurement indicators, and the influence of these factors on the numerical simulation results is studied. For the five kinds commonly state equations of water, the specific values of the artificial viscosity coefficients under different working conditions and appropriate grid size for different explosive equivalents are given. These parameters can provide reference for improving simulation accuracy of underwater explosion shock wave under different working conditions. First, through a series of simulations of the commonly used five kinds of state equations of water, the calculation results of peak pressure and specific impulse are compared with the empirical formula, and the error analysis is carried out to give the applicable scope of each state equation. Secondly, the influence of the artificial viscosity coefficient on the calculation results is discussed, and a series of calculations are carried out for the primary and secondary artificial viscosity coefficients under different working conditions. The recommended range of values for the primary and secondary artificial viscosity coefficients under different working conditions is given. Finally, through a series of calculations on 0.1, 0.5, 1, 10, 50, 100, 500 and 1 000 kg equivalent explosives and different grid sizes, the recommended mesh sizes corresponding to different explosive equivalents under the requirement of engineering calculation accuracy are obtained by limiting the relative error of peak pressure less than 10%. The expressions of the recommended mesh sizes corresponding to different explosive equivalents are also given.

     

  • loading
  • [1]
    杨振, 沈晓乐. 爆破战斗部水中兵器爆炸威力评定方法研究 [J]. 爆破, 2015, 32(2): 51–53. doi: 10.3963/j.issn.1001-487X.2015.02.009

    YANG Z, SHEN X L. Research on evaluation method of underwater blast brisance of weapon’s explosive [J]. Blasting, 2015, 32(2): 51–53. doi: 10.3963/j.issn.1001-487X.2015.02.009
    [2]
    张志华, 钟强晖, 李庆民. 小药量水下爆炸对水下目标的毁伤有效值评估 [J]. 兵工学报, 2009, 30(10): 1344–1348.

    ZHANG Z H, ZHONG Q H, LI Q M. Evaluation of damage valid value of underwater target detonated by small charge [J]. Acta Armamentarii, 2009, 30(10): 1344–1348.
    [3]
    SRINIVAS K A, UMAPATHI GOKUL K, PYDISETTY V K R, et al. Blast loading of underwater targets – a study through explosion bulge test experiments [J]. International Journal of Impact Engineering, 2015, 76: 189–195. doi: 10.1016/j.ijimpeng.2014.09.007
    [4]
    ZHANG J, SHI X H, SOARES C G. Experimental study on the response of multi-layered protective structure subjected to underwater contact explosions [J]. International Journal of Impact Engineering, 2016, 100: 23–34.
    [5]
    罗松林, 叶序双, 顾文彬, 等. 水下爆炸研究现状 [J]. 工程爆破, 1999, 5(1): 84–87. doi: 10.3969/j.issn.1006-7051.1999.01.023
    [6]
    梁向前. 水下爆破技术[M]. 化学工业出版社, 2013.
    [7]
    QIAN K J, GANG Y D. A finite element analysis of ship sections subjected to underwater explosion [J]. International Journal of Impact Engineering, 2011, 38(7): 558–566. doi: 10.1016/j.ijimpeng.2010.11.005
    [8]
    BRETT J M, YIANNAKOPOLOUS G. A study of explosive effects in close proximity to a submerged cylinder [J]. International Journal of Impact Engineering, 2008, 35(4): 206–225. doi: 10.1016/j.ijimpeng.2007.01.007
    [9]
    王军, 孙丰, 陈舸, 等. 水下爆炸载荷作用下MK46鱼雷结构动态响应分析 [J]. 鱼雷技术, 2013(4): 293–298.
    [10]
    北京工业学院八系《爆炸及其运用》编写组. 爆炸及其运用[M]. 北京: 国防工业出版社, 1979.
    [11]
    徐豫新, 王树山, 李园. 水下爆炸数值仿真研究 [J]. 弹箭与制导学报, 2009, 29(6): 95–97. doi: 10.3969/j.issn.1673-9728.2009.06.026

    XU Y X, WANG S S, LI Y. Study on numerical simulation of the underwater explosive [J]. Journal of Projectiles Rockets, Missiles and Guidance, 2009, 29(6): 95–97. doi: 10.3969/j.issn.1673-9728.2009.06.026
    [12]
    刘科种, 徐更光, 辛春亮, 等. AUTODYN水下爆炸数值模拟研究 [J]. 爆破, 2009, 26(3): 18–21. doi: 10.3963/j.issn.1001-487X.2009.03.005

    LlU K Z, XU G G, XlN C L, et al. Research on numerical simulation in underwater explosion by AUTODYN [J]. Blasting, 2009, 26(3): 18–21. doi: 10.3963/j.issn.1001-487X.2009.03.005
    [13]
    方斌, 朱锡, 张振华, 等. 水下爆炸冲击波数值模拟中的参数影响 [J]. 哈尔滨工程大学学报, 2005, 26(4): 416–424.

    FANG B, ZHU X, ZHANG Z H, et al. Effect of parameters in numerical simulation of underwater shock wave [J]. Journal of Harbin Engineering University, 2005, 26(4): 416–424.
    [14]
    张振华, 朱锡, 白雪飞. 水下爆炸冲击波的数值模拟研究 [J]. 爆炸与冲击, 2004, 24(2): 182–188. doi: 10.3321/j.issn:1001-1455.2004.02.014

    ZHANG Z H, ZHU X, BAI X F. The study on numerical simulation of underwater blast wave [J]. Explosion and Shock Waves, 2004, 24(2): 182–188. doi: 10.3321/j.issn:1001-1455.2004.02.014
    [15]
    梁龙河, 曹菊珍, 王元书. 水下爆炸特性的一维球对称数值研究 [J]. 高压物理学报, 2002, 16(3): 199–203. doi: 10.3969/j.issn.1000-5773.2002.03.007

    LIANG L H, CAO J Z, WANG Y S. One-dimensional numerical simulations of underwater spherical explosions [J]. Chinese Journal of High Pressure Physics, 2002, 16(3): 199–203. doi: 10.3969/j.issn.1000-5773.2002.03.007
    [16]
    DOBRATZ B M. Properties of chemical explosives and explosive simultants [J]. International Journal of Neuroscience, 1981, 51(3–4): 339–340.
    [17]
    盛振新, 刘荣忠, 郭锐. 水下爆炸冲击波相互作用的仿真分析 [J]. 火工品, 2012(3): 25–29.

    SHENU Z X, LlU R Z, GUO R. Study on the shock wave interaction of underwater explosons [J]. Initiators and Pyrotechnics, 2012(3): 25–29.
    [18]
    荣吉利, 李健, 杨荣杰, 等. 水下爆炸气泡脉动的实验及数值模拟 [J]. 北京理工大学学报, 2008, 28(12): 1035–1038.

    RONG J L, LI J, YANG R J, et al. Experiment and numerical simulation for the bubble impulse in underwater explosion [J]. Transactions of Beijing Institute of Technology, 2008, 28(12): 1035–1038.
    [19]
    李晓杰, 张程娇, 闫鸿浩, 等. 水下爆炸近场非均熵流的特征线差分解法 [J]. 爆炸与冲击, 2012, 32(6): 604–608. doi: 10.3969/j.issn.1001-1455.2012.06.008

    LI X J, ZHANG C J, YAN H H, et al. Difference method of characteristics in isentropic flow of underwater explosion in near-field region [J]. Explosion and Shock Waves, 2012, 32(6): 604–608. doi: 10.3969/j.issn.1001-1455.2012.06.008
    [20]
    辛春亮, 秦健, 刘科种, 等. 基于LS-DYNA软件的水下爆炸数值模拟研究 [J]. 弹箭与制导学报, 2008, 28(3): 156–158. doi: 10.3969/j.issn.1673-9728.2008.03.047

    XlN C L, QlN J, LlU K Z, et al. Research on UNDEX numerical simulation hased on LS-DYNA [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(3): 156–158. doi: 10.3969/j.issn.1673-9728.2008.03.047
    [21]
    STENBERG D J. Spherical explosions and the equation of state of water, UCID-2097 [R]. Livermore, CA: Lawrence Livermore National Laboratory,1987.
    [22]
    SHIN Y S, LEE M, LAM K Y, et al. Modeling mitigation effects of watershield on shock waves [J]. Shock and Vibration, 1998, 5(4): 225–234. doi: 10.1155/1998/782032
    [23]
    LIU M B, LIU G R, LAM K Y, et al. Smoothed particle hydrodynamics for numerical simulation of underwater explosion [J]. Computational Mechanics, 2003, 30(2): 106–118. doi: 10.1007/s00466-002-0371-6
    [24]
    梅群, 侯中华, 朱俊锋, 等. 水下爆炸冲击波压力时程的数值模拟 [J]. 河南科技大学学报(自然科学版), 2010, 31(4): 57–59.

    MEI Q, HOU Z H, ZHU J F, et al. Numerical simulation of underwater explosion shock wave [J]. Journal of Henan University of Science and Technology: Natural Science, 2010, 31(4): 57–59.
    [25]
    尹群. 水面舰船设备冲击环境与结构抗冲击性能研究 [D]. 南京: 南京航空航天大学, 2006.

    YIN Q. Studies on shock environment for equipments on surface ship and anti-shock characteristics of structures [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006. DOI: 10.7666/d.d037570.
    [26]
    COLE R H. Underwater explosions [M]. New York: Dover Publications, 1965.
    [27]
    ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion [J]. Dynamic Loads in Underwater Explosion, 1973.
    [28]
    辛春亮. 高能炸药爆炸能量输出结构的数值分析[D]. 北京: 北京理工大学, 2008.
    [29]
    杨坤, 陈朗, 伍俊英, 等. 计算网格与人工黏性系数对炸药水中爆炸数值模拟计算的影响分析 [J]. 兵工学报, 2014(Suppl 2): 237–243.

    YANG K, CHEN L, WU J Y, et al. The effects of computing grid and artificial viscosity coefficient on underwater explosion numerical simulation [J]. Acta Armamentarii, 2014(Suppl 2): 237–243.
    [30]
    KIM J H, SHIN H C. Application of the ALE technique for underwater explosion analysis of a submarine liquefied oxygen tank [J]. Ocean Engineering, 2008, 35(8/9): 812–822. doi: 10.1016/j.oceaneng.2008.01.019
    [31]
    张社荣, 李宏璧, 王高辉, 等. 水下爆炸冲击波数值模拟的网格尺寸确定方法 [J]. 振动与冲击, 2015, 34(8): 93–100.

    ZHANG S R, LI H B, WANG G H, et al. A method to determine mesh size in numerical simulation of shock wave of underwater explosion [J]. Journal of Vibration and Shock, 2015, 34(8): 93–100.
    [32]
    余晓菲, 刘土光, 张涛. 水下爆炸冲击波的载荷强度计算 [J]. 舰船科学技术, 2006, 28(5): 22–28.

    YU X F, LIU T G, ZHANG T. Computation of the blast loading strength of underwater explosion shock waves [J]. Ship Science and Technology, 2006, 28(5): 22–28.
    [33]
    方斌, 朱锡, 张振华. 水下爆炸冲击波载荷作用下船底板架的塑性动力响应 [J]. 哈尔滨工程大学学报, 2008, 29(4): 326–331. doi: 10.3969/j.issn.1006-7043.2008.04.002

    FANG B, ZHU X, ZHANG Z H. Plastic dynanic response of ship hull grillage to underwater blast loading [J]. Journal of Harbin Engineering University, 2008, 29(4): 326–331. doi: 10.3969/j.issn.1006-7043.2008.04.002
    [34]
    吴国民, 周心桃, 肖汉林, 等. 水下爆炸数值仿真 [J]. 舰船科学技术, 2012, 34(9): 20–26. doi: 10.3404/j.issn.1672-7649.2012.09.004

    WU G M, ZHOU X T, XIAO H L, et al. Numerical simulation of underwater explosion [J]. Ship Science & Technology, 2012, 34(9): 20–26. doi: 10.3404/j.issn.1672-7649.2012.09.004
    [35]
    肖秋平, 陈网桦, 贾宪振, 等. 基于AUTODYN的水下爆炸冲击波模拟研究 [J]. 舰船科学技术, 2009, 31(2): 38–43. doi: 10.3404/j.issn.1672-7649.2009.02.005

    XIAO Q P, CHEN W H, JIA X Z, et al. Numerical study of underwater explosion shock wave based on AUTODYN [J]. Ship Science and Technology, 2009, 31(2): 38–43. doi: 10.3404/j.issn.1672-7649.2009.02.005
    [36]
    胡毅亭, 贾宪振, 饶国宁, 等. 水下爆炸冲击波和气泡脉动的数值模拟研究 [J]. 舰船科学技术, 2009, 31(2): 134–140. doi: 10.3404/j.issn.1672-7649.2009.02.027

    HU Y T, JIA X Z, RAO G N, et al. Numerical study of underwater explosion shock wave and bubble pulse [J]. Ship Science and Technology, 2009, 31(2): 134–140. doi: 10.3404/j.issn.1672-7649.2009.02.027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(11)

    Article Metrics

    Article views(10279) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return