Volume 33 Issue 2
Apr 2019
Turn off MathJax
Article Contents
JIANG Hongmei, CAO Ye, YANG Songrui, MA Zhiwei, FU Ruijing, SHI Yue, XIAO Guanjun. Band Gap Modulation of Orthorhombic Cesium Lead Iodide Perovskite Nanorods under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020101. doi: 10.11858/gywlxb.20190711
Citation: JIANG Hongmei, CAO Ye, YANG Songrui, MA Zhiwei, FU Ruijing, SHI Yue, XIAO Guanjun. Band Gap Modulation of Orthorhombic Cesium Lead Iodide Perovskite Nanorods under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020101. doi: 10.11858/gywlxb.20190711

Band Gap Modulation of Orthorhombic Cesium Lead Iodide Perovskite Nanorods under High Pressure

doi: 10.11858/gywlxb.20190711
  • Received Date: 16 Jan 2019
  • Rev Recd Date: 01 Mar 2019
  • Publish Date: 25 Jun 2019
  • The all-inorganic halide perovskite is a promising photoelectric material because of its strong stability and good optical properties. However, it is still a key problem to effectively design the band gap to meet the practical application requirements. By controlling the reaction time and temperature, the morphology of cesium-lead-iodine (CsPbI3) nano-material could be controlled, and the rod-like CsPbI3 nano-material with uniform morphology and good crystallinity was synthesized. The band gap changes of CsPbI3 nanorods under high pressure were further studied by using diamond pair anvil and in situ high pressure ultraviolet-visible absorption spectroscopy. It is found that the band gap of CsPbI3 nanorods decreases under high pressure, and the tunable band gap lays the foundation for the application of nano-materials in the field of photovoltaic cells. The results can not only help to establish the structural properties of CsPbI3 nanorods on the atomic scale. It also provides an important clue for the practical application of all-inorganic perovskite nano-materials.

     

  • loading
  • [1]
    WANG Y, LI X, SONG J, et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics [J]. Advanced Materials, 2015, 27(44): 7101–7108. doi: 10.1002/adma.201503573
    [2]
    CAO Y, QI G, LIU C, et al. Pressure-tailored band gap engineering and structure evolution of cubic cesium lead iodide perovskite nanocrystals [J]. The Journal of Physical Chemistry C, 2018, 122(17): 9332–9338. doi: 10.1021/acs.jpcc.8b01673
    [3]
    DOU L, YANG Y M, YOU J, et al. Solution-processed hybrid perovskite photodetectors with high detectivity [J]. Nature Communications, 2014, 5: 5404. doi: 10.1038/ncomms6404
    [4]
    ZHANG D, EATON S W, YU Y, et al. Solution-phase synthesis of cesium lead halide perovskite nanowires [J]. Journal of the American Chemical Society, 2015, 137(29): 9230–9233. doi: 10.1021/jacs.5b05404
    [5]
    SWARNKAR A, MARSHALL A R, SANEHIRA E M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics [J]. Science, 2016, 354(6308): 92–95. doi: 10.1126/science.aag2700
    [6]
    TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nature Nanotechnology, 2014, 9(9): 687. doi: 10.1038/nnano.2014.149
    [7]
    NAGAOKA Y, HILLS-KIMBALL K, TAN R, et al. Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels [J]. Advanced Materials, 2017, 29(18): 1606666. doi: 10.1002/adma.201606666
    [8]
    WANG Z, WEN X D, HOFFMANN R, et al. Reconstructing a solid-solid phase transformation pathway in CdSe nanosheets with associated soft ligands [J]. Proceedings of the National Academy of Sciences, 2010, 107(40): 17119–17124. doi: 10.1073/pnas.1011224107
    [9]
    WU H, BAI F, SUN Z, et al. Pressure-driven assembly of spherical nanoparticles and formation of 1D-nanostructure arrays [J]. Angewandte Chemie International Edition, 2010, 49(45): 8431–8434. doi: 10.1002/anie.201001581
    [10]
    LI B, BIAN K, ZHOU X, et al. Pressure compression of CdSe nanoparticles into luminescent nanowires [J]. Science Advances, 2017, 3(5): e1602916. doi: 10.1126/sciadv.1602916
    [11]
    XIAO G, CAO Y, QI G, et al. Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals [J]. Journal of the American Chemical Society, 2017, 139(29): 10087–10094. doi: 10.1021/jacs.7b05260
    [12]
    ZHANG L, ZENG Q, WANG K. Pressure-induced structural and optical properties of inorganic halide perovskite CsPbBr3 [J]. The Journal of Physical Chemistry Letters, 2017, 8(16): 3752–3758. doi: 10.1021/acs.jpclett.7b01577
    [13]
    YIN T, FANG Y, CHONG W K, et al. High-pressure-induced comminution and recrystallization of CH3NH3PbBr3 nanocrystals as large thin nanoplates [J]. Advanced Materials, 2018, 30(2): 1705017. doi: 10.1002/adma.v30.2
    [14]
    WANG Y, LÜ X, YANG W, et al. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite [J]. Journal of the American Chemical Society, 2015, 137(34): 11144–11149. doi: 10.1021/jacs.5b06346
    [15]
    JIANG S, FANG Y, LI R, et al. Pressure-dependent polymorphism and band-gap tuning of methylammonium lead iodide perovskite [J]. Angewandte Chemie International Edition, 2016, 55(22): 6540–6544. doi: 10.1002/anie.201601788
    [16]
    LIU G, KONG L, GONG J, et al. Pressure-induced bandgap optimization in lead-based perovskites with prolonged carrier lifetime and ambient retainability [J]. Advanced Functional Materials, 2017, 27(3): 1604208. doi: 10.1002/adfm.v27.3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(9203) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return