Volume 32 Issue 6
Dec 2018
Turn off MathJax
Article Contents
GU Kemin, YAN Hao, KE Feng, DENG Wen, XU Jianing, CHEN Bin. Pressure-Induced Electrical Transport Anomaly, Structure Evolution and Vibration Change in Layered Material 1T-TiTe2[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 061101. doi: 10.11858/gywlxb.20180568
Citation: GU Kemin, YAN Hao, KE Feng, DENG Wen, XU Jianing, CHEN Bin. Pressure-Induced Electrical Transport Anomaly, Structure Evolution and Vibration Change in Layered Material 1T-TiTe2[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 061101. doi: 10.11858/gywlxb.20180568

Pressure-Induced Electrical Transport Anomaly, Structure Evolution and Vibration Change in Layered Material 1T-TiTe2

doi: 10.11858/gywlxb.20180568
More Information
  • Author Bio:

    GU Kemin(1992-), male, master, major in condensed matter physics. E-mail:Kemin.gu@hpstar.ac.cn

  • Corresponding author: CHEN Bin(1950-), male, Ph. D, one thousand talent, expertise in material science. E-mail:binchen@hpstar.ac.cn
  • Received Date: 21 May 2018
  • Rev Recd Date: 04 Jun 2018
  • We conducted a systematic study on pressure-dependent electrical, vibrational and structural properties of titanium ditelluride up to 43.4 GPa. The room-temperature resistivity shows a series of anomaly changes at around 6, 13 and 22 GPa. Low-temperature resistance measurement was also employed to better understand the electronic structure and we observed the superconductivity at about 6 GPa successfully. Raman spectroscopy and X-ray diffraction (XRD) experiment show a topological phase transition at about 6 GPa followed by a structure phase transition at about 13 GPa. The P3m1 to C2/m phase transition begins from about 13 GPa and completes at about 22 GPa. The XRD data correlate well with our electronic transport measurement result, which shows a pressure-induced structure evolution and electronic structure modification. Therefore titanium ditelluride may provide us with a new perspective to understand the high pressure behaviors in transition metal dichalcogenides.

     

  • loading
  • [1]
    ALI M N, XIONG J, FLYNN S, et al. Large, non-saturating magnetoresistance in WTe2[J].Nature, 2014, 514(7521):205-208. doi: 10.1038/nature13763
    [2]
    CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J].Nature Chemistry, 2013, 5(4):263-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a4873481fef04e0e4592491e9b179ac
    [3]
    RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J].Nature Nanotechnology, 2011, 6(3):147-150. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220379154/
    [4]
    CHEN Y, KE F, CI P, et al. Pressurizing field-effect transistors of few-layer MoS2 in a diamond anvil cell[J].Nano Letters, 2017, 17(1):194-199. doi: 10.1021/acs.nanolett.6b03785
    [5]
    YAN J, KE F, LIU C, et al. Pressure-driven semiconducting-semimetallic transition in SnSe[J].Physical Chemistry Chemical Physics, 2016, 18(6):5012-5018. doi: 10.1039/C5CP07377D
    [6]
    CLAESSEN R, ANDERSON R O, GWEON G, et al. Complete band-structure determination of the quasi-two-dimensional Fermi-liquid reference compound TiTe2[J].Physical Review B:Condensed Matter, 1996, 54(4):2453-2462. doi: 10.1103/PhysRevB.54.2453
    [7]
    KHAN J, NOLEN C M, TEWELDEBRHAN D, et al. Anomalous electron transport in back-gated field-effect transistors with TiTe2 semimetal thin-film channels[J].Applied Physics Letters, 2012, 100(4):183-187. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1201.1526
    [8]
    DE BOER D K G, VAN BRUGGEN C F, BUS G W, et al. Titanium ditelluride:Band structure, photoemission, and electrical and magnetic properties[J].Physical Review B:Condensed Matter, 1984, 29(29):6797-6809. http://adsabs.harvard.edu/abs/1984PhRvB..29.6797D
    [9]
    ZHANG Q, CHENG Y, SCHWINGENSCHLÖGL U.Series of topological phase transitions in TiTe2, under strain[J].Physical Review B, 2013, 88(15):155317-155322. doi: 10.1103/PhysRevB.88.155317
    [10]
    FENG K, DONG H, CHEN Y, et al. Decompression-driven superconductivity enhancement in In2Se3[J].Advanced Materials, 2017, 29(4):1701983-1701988. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ca893ae01f07480a5737b1f7aa51a015
    [11]
    KE F, YANG J, LIU C, et al. High-pressure electrical-transport properties of SnS:experimental and theoretical approaches[J].Journal of Physical Chemistry C, 2013, 117(12):6033-6038. doi: 10.1021/jp3112556
    [12]
    NAYAK A P, BHATTACHARYYA S, ZHU J, et al. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide[J].Nature Communications, 2014, 5(6183):536-538. http://www.nature.com/ncomms/2014/140507/ncomms4731/abs/ncomms4731.html
    [13]
    PAN X C, CHEN X, LIU H, et al. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride[J].Nature Communications, 2015, 6:7805-7811. doi: 10.1038/ncomms8805
    [14]
    QI Y, NAUMOV P G, ALI M N, et al. Superconductivity in Weyl semimetal candidate MoTe2[J].Nature Communications, 2016, 7:11038-11043. doi: 10.1038/ncomms11038
    [15]
    ZHOU Y, WU J, NING W, et al. Pressure-induced superconductivity in a three-dimensional topological material ZrTe5[J].Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(11):2904-2909. doi: 10.1073/pnas.1601262113
    [16]
    MAO H K, XU J, BELL P M.Calibration of the ruby pressure gauge to 800kbar under quasi-hydrostatic conditions[J].Journal of Geophysical Research Solid Earth, 1986, 91(B5):4673-4676. doi: 10.1029/JB091iB05p04673
    [17]
    VAN DER PAUW L.A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape[J].Philips Technical Review, 1958, 20(8):220-224.
    [18]
    CHIJIOKE A D, NELLIS W J, SOLDATOV A, et al. The ruby pressure standard to 150GPa[J].Journal of Applied Physics, 2005, 98(11):114905-114905. doi: 10.1063/1.2135877
    [19]
    PRESCHER C, PRAKAPENKA V B.A program for reduction of two-dimensional X-ray diffraction data and data exploration[J].High Pressure Research, 2015, 35(3):285-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=36647e47e9aa2ebf76d027e9b1d6703f
    [20]
    ROISNEL T, RODRIQUEZ-CARVAJALL J.WINPLOTR:a windows tool for powder diffraction pattern analysis[J].Materials Science Forum, 2001, 378(1):118-123. http://www.scientific.net/MSF.378-381.118.pdf
    [21]
    RODRÍGUEZ-CARVAJAL J.Recent advances in magnetic structure determination by neutron powder diffraction[J].Physica B:Condensed Matter, 1993, 192(1/2):55-69. doi: 10.1016-0921-4526(93)90108-I/
    [22]
    RAJAJI V, DUTTA U, SREEPARVATHY P C, et al. Structural, vibrational, and electrical properties of 1T-TiTe2, under hydrostatic pressure:experiments and theory[J].Physical Review B, 2018, 97(8):085107-085122. doi: 10.1103/PhysRevB.97.085107
    [23]
    YOMO R, YAMAYA K.Pressure effect on competition between charge density wave and superconductivity in ZrTe3:appearance of pressure-induced reentrant superconductivity[J].Physical Review B, 2005, 71(13):2508-2513. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000071000013132508000001&idtype=cvips&gifs=Yes
    [24]
    XI X, MA C, LIU Z, et al. Signatures of a pressure-induced topological quantum phase transition in BiTel[J].Physical Review Letters, 2013, 111(15):155701-155708. doi: 10.1103/PhysRevLett.111.155701
    [25]
    OHMURA A, HIGUCHI Y, OCHIAI T, et al. Pressure-induced topological phase transition in the polar semiconductor BiTeBr[J].Physical Review B, 2017, 95(12):12527-12532. doi: 10.1103/PhysRevB.95.125203
    [26]
    HANGYO M, NAKASHIMA S I, MITSUISHI A.Raman spectroscopic studies of MX2-type layered compounds[J].Ferroelectrics, 1983, 52(1):151-159. doi: 10.1080/00150198308208248
    [27]
    BARDEEN J, COOPER L N, SCHRIEFFER J R.Microscopic theory of superconductivity[J].Journal of Superconductivity, 1957, 106(106):162-164. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0902.4314
    [28]
    MCMILLAN W L.Transition temperature of strong-coupled superconductors[J].Physical Review, 1968, 167(2):331-344. doi: 10.1103/PhysRev.167.331
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(8225) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return