Volume 32 Issue 3
Apr 2018
Turn off MathJax
Article Contents
WANG Tao, BAI Jingsong, CAO Renyi, WANG Bing, ZHONG Min, LI Ping, TAO Gang. Numerical Investigations of Perturbation Growth in Aluminum Flyer Driven by Explosion[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 032301. doi: 10.11858/gywlxb.20170624
Citation: WANG Tao, BAI Jingsong, CAO Renyi, WANG Bing, ZHONG Min, LI Ping, TAO Gang. Numerical Investigations of Perturbation Growth in Aluminum Flyer Driven by Explosion[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 032301. doi: 10.11858/gywlxb.20170624

Numerical Investigations of Perturbation Growth in Aluminum Flyer Driven by Explosion

doi: 10.11858/gywlxb.20170624
Funds:

Science Challenge Project TZ2016001

National Natural Science Foundation of China 11372294

National Natural Science Foundation of China 11532012

National Natural Science Foundation of China 11672277

More Information
  • Corresponding author: WANG Tao(1979-), male, master, major in computational mechanics.E-mail:wtao_mg@163.com
  • Received Date: 01 Aug 2017
  • Rev Recd Date: 30 Aug 2017
  • In this paper we developed an experimental technique and numerical simulation method that we then adopted to investigate the Rayleigh-Taylor instability in metallic materials driven by explosion.We studied experimentally and numerically the growth of the Rayleigh-Taylor instability in an explosion-driven aluminum flyer and showed that the perturbation amplitude growth follows an exponential law over time.The numerical results agree with the experiment qualitatively, but not quantitatively.This is because the aluminum strengthens under high pressure and at high strain rate, and the Steinberg-Guinan constitutive model used in the simulations underestimates the strength of the aluminum as being not great enough to suppress the perturbation growth.By investigating numerically the effects of the initial shear modulus and the initial yield strength on the development of the Rayleigh-Taylor instability of the metallic material, we also found that the initial shear modulus in a specified range does not affect the dynamic yield strength and the increase in the initial yield strength can improve the dynamic yield strength significantly to stabilize the perturbation growth.In other words, the material strength dominates the interface perturbation growth.

     

  • loading
  • [1]
    RAYLEIGH L.Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[J].Proceedings London Mathematical Society, 1883, 14(1):170-177. http://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=631996
    [2]
    TAYLOR G I.The instability of liquid surfaces when accelerated in a direction perpendicular to their plane[J].Proceedings of the Royal Society of London, Series A, 1950, 201(1065):192-196. doi: 10.1098/rspa.1950.0052
    [3]
    DIMONTE G, TERRONES G, CHERNE F J, et al.Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities[J].Physical Review Letters, 2011, 107(26):264502. doi: 10.1103/PhysRevLett.107.264502
    [4]
    PARK H S, REMINGTON B A, BECKER R C, et al.Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures[J].Physics of Plasmas, 2010, 17(5):056314. doi: 10.1063/1.3363170
    [5]
    MCCRORY R L, MONTIERTH L, MORSE R L, et al.Nonlinear evolution of ablation-driven Rayleigh-Taylor instability[J].Physical Review Letters, 1981, 46(5):336-339. doi: 10.1103/PhysRevLett.46.336
    [6]
    KIFONIDIS K, PLEWA T, SCHECK L, et al.Non-spherical core collapse supernovae Ⅱ.The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987A[J].Astron Astrophys, 2006, 453:661-678. doi: 10.1051/0004-6361:20054512
    [7]
    MAC LOW M M, ZAHNLE K.Explosion of comet shoemaker-levy 9 on entry into the jovian atmosphere[J].The Astrophysical Journal, 1994, 434:L33-L36. doi: 10.1086/187565
    [8]
    MOLNAR P, HOUSEMAN G A, CONRAD C P.Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere:effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer[J].Geophysical Journal International, 1998, 133(3):568-584. doi: 10.1046/j.1365-246X.1998.00510.x
    [9]
    MILES J W. Taylor instability of a flat plate, General atomic division of general dynamics: GAMD-7335[R]. 1966.
    [10]
    WHITE G N. A one-degree-of-freedom model for the Tayloy instability of an ideally plastic metal plate: LA-5225-MS[R]. Los Alamos, NM: Los Alamos National Laboratory, 1973.
    [11]
    ROBINSON A C, SWEGLE J W.Acceleration instability in elastic-plastic solids Ⅱ.Analytical techniques[J].Journal of Applied Physics, 1989, 66(7):2859-2872. doi: 10.1063/1.344191
    [12]
    PIRIZ A R, LÓPEZ CELA J J, CORTÁZAR O D, et al.Rayleigh-Taylor instability in elastic solids[J].Physical Review E, 2005, 72(5):056313. doi: 10.1103/PhysRevE.72.056313
    [13]
    PIRIZ A R, LÓPEZ CELA J J, TAHIR N A.Rayleigh-Taylor instability in elastic-plastic solids[J].Journal of Applied Physics, 2009, 105(11):116101. doi: 10.1063/1.3139267
    [14]
    BARNES J F, BLEWETT P J, MCQUEEN R G, et al.Taylor instability in solids[J].Journal of Applied Physics, 1974, 45(2):727-732. doi: 10.1063/1.1663310
    [15]
    GRAHAM L M J, CAVALLO R M, LORENZ K T, et al. Aluminum Rayleigh Taylor strength measurements and calculations[C]//10th International Workshop on Physics of Compressible Turbulent Mixing. Paris, France, 2006.
    [16]
    OLSON R T, CERRETA E K, MORRIS C, et al.The effect of microstructure on Rayleigh-Taylor instability growth in solids[J].Journal of Physics:Conference Series, 2014, 500:112048. doi: 10.1088/1742-6596/500/11/112048
    [17]
    HENRY DE FRAHAN M T, BELOF J L, CAVALLO R M, et al.Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability[J].Journal of Applied Physics, 2015, 117(22):225901. doi: 10.1063/1.4922336
    [18]
    APRELKOV O N, IGNATOVA O N, IGONIN V V, et al. Twinning and dynamic strength of copper during high-rate strain[C]//Shock Compression of Condensed Matter-AIP Conference Proceedings, 2007, 955(1): 619-622.
    [19]
    IGONIN V V, IGNATOVA O N, LEBEDEV A I, et al. Influence of dynamic properties on perturbation growth in tantalum[C]//Shock Compression of Condensed Matter-AIP Conference Proceedings, 2010, 1195(1): 1085-1088.
    [20]
    SLUTZ S A, HERRMANN M C, VESEY R A, et al.Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J].Physics Plasmas, 2010, 17(5):056303. doi: 10.1063/1.3333505
    [21]
    MCBRIDE R D, SLUTZ S A, JENNINGS C A, et al.Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator[J].Physical Review Letters, 2012, 109(13):135004. doi: 10.1103/PhysRevLett.109.135004
    [22]
    LORENZ K T, EDWARDS M J, GLENDINNING S G, et al.Accessing ultrahigh-pressure, quasi-isentropic states of matter[J].Physics Plasmas, 2005, 12(5):056309. doi: 10.1063/1.1873812
    [23]
    REMINGTON B A, PARK H S, PRISBREY S T, et al. Progress towards materials science above 1000 GPa (10 Mbar) on the NIF laser: LLNL-CONF-411555[R]. Livermore, CA: Lawrence Livermore National Laboratory, 2009.
    [24]
    BELOF J L, CAVALLO R M, OLSON R T, et al. Rayleigh-Taylor strength experiments of the pressure-induced phase transition in iron: LLNL-PROC-492911[R]. Livermore, CA: Lawrence Livermore National Laboratory, 2011.
    [25]
    PIRIZ A R, LÓPEZ CELA J J, TAHIR N A.Richtmyer-Meshkov instability as a tool for evaluating material strength under extreme conditions[J].Nuclear Instruments and Methods in Physics Research Section A, 2009, 606(1/2):139-141. https://www.sciencedirect.com/science/article/pii/S0168900209005646
    [26]
    ATCHISON W L, ZOCHER M A, KAUL A M.Studies of material constitutive behavior using perturbation growth in explosive and magnetically driven liner systems[J].Russian Journal of Physical Chemistry B, 2008, 2(3):387-401. doi: 10.1134/S199079310803010X
    [27]
    PARK H S, BARTON N, BELOF J L, et al. Experimental results of tantalum material strength at high pressure and high strain rate[C]//AIP Conference Proceedings, 2012, 1426(1): 1371-1374.
    [28]
    BAI J S, WANG B, WANG T, et al.Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock[J].Physical Review E, 2012, 86(6):066319. doi: 10.1103/PhysRevE.86.066319
    [29]
    WANG T, TAO G, BAI J S, et al.Numerical comparative analysis of Richtmyer-Meshkov instability simulated by different SGS models[J].Canadian Journal of Physics, 2015, 93(5):519-525. doi: 10.1139/cjp-2014-0099
    [30]
    WANG T, LI P, BAI J S, et al.Large-eddy simulation of the Richtmyer-Meshkov instability[J].Canadian Journal of Physics, 2015, 93(10):1124-1130. doi: 10.1139/cjp-2014-0652
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views(7316) PDF downloads(172) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return