Volume 31 Issue 5
Nov 2017
Turn off MathJax
Article Contents
WU Yang, ZHANG Xian-Feng, XU Chen-Yang, WANG Shu, QIN Bin. Deformation of Rock Material Target under High Velocity Impact[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 603-612. doi: 10.11858/gywlxb.2017.05.014
Citation: WU Yang, ZHANG Xian-Feng, XU Chen-Yang, WANG Shu, QIN Bin. Deformation of Rock Material Target under High Velocity Impact[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 603-612. doi: 10.11858/gywlxb.2017.05.014

Deformation of Rock Material Target under High Velocity Impact

doi: 10.11858/gywlxb.2017.05.014
  • Received Date: 15 Jan 2017
  • Rev Recd Date: 25 Mar 2017
  • Porosity and water content are typical properties that have a significant influence on the macroscopic dynamic behavior of rock materials, which further on affect the cratering behavior under high velocity impact.This paper was focused on the impact cratering morphology and studied the characteristics of dry and wet rock materials by conducting numerical and the high velocity impact experiments.Based on the hypervelocity fragment acceleration platform, experimental studies on the impact cratering of rock materials were performed using numerical simulation, and comparative analysis of the cratering effect, cratering morphology and characteristics of the dry and wet rocks was presented.The results indicate that, in high-velocity cratering, the target of dry sandstone leads to smaller crater sizes compared with those of the water-saturated target.The transient crater reaches a larger diameter in the water saturated sandstone.The water within the pore space reduces the porosity and counteracts this process, which influences the impact cratering of rock materials.

     

  • loading
  • [1]
    游振东, 刘嵘.陨石撞击构造作用的研究现状与前景[J].地质力学学报, 2008, 14(1):22-36. doi: 10.3969/j.issn.1006-6616.2008.01.002

    YOU Z D, LIU R.Research on impact tectonics and impactites:status and prospects[J].Journal of Geomechanics, 2008, 14(1):22-36. doi: 10.3969/j.issn.1006-6616.2008.01.002
    [2]
    KENKMANN T, DEUTSCH A, THOMA K, et al.The MEMIN research unit:experimental impact cratering[J].Meteorit Planet Sci, 2013, 48(1):1-2. doi: 10.1111/maps.12035/full
    [3]
    KENKMANN T, KOWITZ A, WVNNEMANN K, et al.Experimental impact cratering in sandstone: the effect of pore fluids[C]//11th Hypervelocity Impact Symposium.Freiburg, Germany, 2010.
    [4]
    BALDWIN E C, MILNER D J, BURCHELL M J, et al.Laboratory impacts into dry and wet sandstone with and without an overlying water layer:implications for scaling laws and projectile survivability[J].Meteorit Planet Sci, 2007, 42(11):1905-1914. doi: 10.1111/maps.2007.42.issue-11
    [5]
    POELCHAU M H, KENKMANN T, THOMA K, et al.The MEMIN research unit:Scaling impact cratering experiments in porous sandstones[J].Meteorit Planet Sci, 2013, 48(1):8-22. doi: 10.1111/maps.2013.48.issue-1
    [6]
    BUHL E, POELCHAU M H, DRESEN G, et al.Deformation of dry and wet sandstone targets during hypervelocity impact experiments, as revealed from the MEMIN Program[J].Meteorit Planet Sci, 2013, 48(1):71-86. doi: 10.1111/maps.2013.48.issue-1
    [7]
    BUHL E, KOWITZ A, ELBESHAUSEN D, et al.Particle size distribution and strain rate attenuation in hypervelocity impact and shock recovery experiments[J].J Struct Geol, 2013, 56(7):20-33. http://www.sciencedirect.com/science/article/pii/S0191814113001491
    [8]
    SOMMER F, REISER F, DUFRESNE A, et al.Ejection behavior characteristics in experimental cratering in sandstone targets[J].Meteorit Planet Sci, 2013, 48(1):33-49. doi: 10.1111/maps.12017/full
    [9]
    GVLDEMEISTER N, WVNNEMANN K, DURR N, et al.Propagation of impact-induced shock waves in porous sandstone using mesoscale modeling[J].Meteorit Planet Sci, 2013, 48(1):115-133. doi: 10.1111/maps.2013.48.issue-1
    [10]
    DURR N, SAUER M, GVLDEMEISTER N, et al.Mesoscale investigation of shock wave effects in dry and water-šaturated sandstone[J].Procedia Engineering, 2013, 58:289-298. doi: 10.1016/j.proeng.2013.05.033
    [11]
    JOHNSON G R, COOK W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics.The Hague, Netherlands: International Ballistics Committee, 1983, 21: 541-547.
    [12]
    WANG W, LÜ J, WANG H C.A creep-damage constitutive model for sandstone[J].Appl Mech Mater, 2012, 170-173:289-294. doi: 10.4028/www.scientific.net/AMM.170-173
    [13]
    BORG J P, COGAR J R, LLOYD A, et al.Computational simulations of the dynamic compaction of porous media[J].Int J Impact Eng, 2006, 33(1):109-118. http://www.sciencedirect.com/science/article/pii/S0734743X06001709
    [14]
    WU Y, ZHANG X F, WANG S, et al.Propagation of shock waves in dry and wet sandstone: theoretical analysis and meso-scale modeling[C]//2016 International Forum on Specialized Equipment and Engineering Mechanics.Nanjing, China, 2016.
    [15]
    HOERTH T, SCHAEFER F, THOMA K, et al.Hypervelocity impacts on dry and wet sandstone:observations of ejecta dynamics and crater growth[J].Meteorit Planet Sci, 2013, 48(1):23-32. doi: 10.1111/maps.12044/full
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article Metrics

    Article views(7350) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return