Volume 31 Issue 4
Aug 2017
Turn off MathJax
Article Contents
YANG Xiao, ZHI Xiao-Qi, YANG Bao-Lang, LI Juan-Juan. Influence of Charge Structure on the Cook-off Temperature Distribution of Solid Rocket Motor[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 433-442. doi: 10.11858/gywlxb.2017.04.012
Citation: YANG Xiao, ZHI Xiao-Qi, YANG Bao-Lang, LI Juan-Juan. Influence of Charge Structure on the Cook-off Temperature Distribution of Solid Rocket Motor[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 433-442. doi: 10.11858/gywlxb.2017.04.012

Influence of Charge Structure on the Cook-off Temperature Distribution of Solid Rocket Motor

doi: 10.11858/gywlxb.2017.04.012
  • Received Date: 17 Nov 2016
  • Rev Recd Date: 02 Apr 2017
  • To investigate the influence of the charge structure on the cook-off characteristics of the solid rocket motor, we established 3 simplified cook-off models with 3 different charge structures, including the composite, the mono tube and the star tube, for the solid rocket motor with HTPE propellant.We conducted a cook-off test of small-size cook-off samples with HTPE propellant at the heating rate of 1℃/min and 2℃/min, and based on this experiment result, we adjusted the parameters of propellant material.By using the FLUENT software, we conducted the numerical simulation of the models' cook-off behaviors with 3 different charge structures at different heating rates (β).The results show that the charge structure has influence on the cook-off response time, the ignition point and the fast or slow cook-off division.The star tube charge leads to a critical heating rate effect, i.e. the jumping change of the ignition point, whereas the mono tube charge does not.Under the condition of this study, the critical heating rate of the composite charge motor with a star tube section is 0.2℃/min, and the critical heating rate of the star tube charge motor is 0.3 and 0.5℃/min, that is, when 0.3℃/min≤β≤0.5℃/min the ignition point jump changes.

     

  • loading
  • [1]
    Military standard-hazard assessment tests for non-nuclear munitions: MIL-STD-2105C[S]. 2003.
    [2]
    HO S Y.Thermomechanical properties of rocket propellants and correlation with cook-off behavior[J]. Propell Explos Pyrot, 1995, 20(4):206-214. doi: 10.1002/prep.19950200409/full
    [3]
    CARO R I, BELLERBY J M.Behavior of hydroxyl-terminated polyether (HTPE) composite rocket propellants in slow cook-off[J]. Int J Energ Mater Chem Propul, 2008, 7(3):171-185.
    [4]
    赵孝彬, 李军, 程立国, 等.固体推进剂慢速烤燃特性的影响因素研究[J].含能材料, 2011, 19(6):669-672. doi: 10.3969/j.issn.1006-9941.2011.06.016

    ZHAO X B, LI J, CHENG L G, et al.Influence factors of slow cook-off characteristic for solid propellant[J]. Chinese Journal of Energetic Materials, 2011, 19(6):669-672. doi: 10.3969/j.issn.1006-9941.2011.06.016
    [5]
    陈晨, 路桂娥, 江劲勇, 等.GATo-3推进剂的烤燃实验[J].含能材料, 2015, 23(6):563-567. http://d.old.wanfangdata.com.cn/Periodical/hncl201506011

    CHEN C, LU G E, JIANG J Y, et al.Cook-off test of GATo-3 propellant[J]. Chinese Journal of Energetic Materials, 2015, 23(6):563-567. http://d.old.wanfangdata.com.cn/Periodical/hncl201506011
    [6]
    原渭兰, 潘浪.一种舰载导弹固体火箭发动机烤燃过程的数值计算方法[J].舰船科学技术, 2009, 31(7):129-132. doi: 10.3404/j.issn.1672-7649.2009.07.029

    YUAN W L, PAN L.An numerical calculation method on cook-off of solid rocket motor of ship-based missiles[J]. Ship Science and Technology, 2009, 31(7):129-132. doi: 10.3404/j.issn.1672-7649.2009.07.029
    [7]
    杨后文, 余永刚, 叶锐.AP/HTPB复合固体推进剂慢烤燃特性的数值模拟[J].含能材料, 2015, 23(10):924-929. doi: 10.11943/j.issn.1006-9941.2015.10.002

    YANG H W, YU Y G, YE R.Numerical simulation of slow cook-off characteristic for AP/HTPB composite solid propellant[J]. Chinese Journal of Energetic Materials, 2015, 23(10):924-929. doi: 10.11943/j.issn.1006-9941.2015.10.002
    [8]
    杨后文, 余永刚, 叶锐.不同火焰环境下固体火箭发动机烤燃特性数值模拟[J].兵工学报, 2015, 36(9):1640-1646. doi: 10.3969/j.issn.1000-1093.2015.09.006

    YANG H W, YU Y G, YE R.Numerical simulation of cook-off characteristic of solid rocket motor in different flame environments[J]. Acta Armamentarii, 2015, 36(9):1640-1646. doi: 10.3969/j.issn.1000-1093.2015.09.006
    [9]
    丁黎, 王琼, 王江宁, 等.高固含量改性双基推进剂的烤燃试验研究[J].固体火箭技术, 2014, 37(6):829-837. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201406017

    DING L, WANG Q, WANG J N, et al.Study of screw extrusion modified double base (MDB) propellant with high solid congtent by cook-off test[J]. Journal of Solid Rocket Technology, 2014, 37(6):829-837. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201406017
    [10]
    冯长根.热爆炸理论[M].北京:科学出版社, 1988.

    FENG C G.Thermal explosion theory[M]. Beijing:Science Press, 1988.
    [11]
    王福军.计算流体动力学[M].北京:清华大学出版社, 2004.

    WANG F J.Analysis of computational fluid dynamics[M]. Beijing:Tsinghua University Press, 2004.
    [12]
    Fluent Inc.FLUENT user's guide[Z]. US: Fluent Inc, 2006.
    [13]
    陈朗, 马欣, 黄毅民, 等.炸药多点测温烤燃实验和数值模拟[J].兵工学报, 2011, 32(10):1230-1236. http://d.old.wanfangdata.com.cn/Periodical/bgxb201110010

    CHEN L, MA X, HUANG Y M, et al.Multi-point temperature measuring cook-off test and numerical simulation of explosive[J]. Acta Armamentarii, 2011, 32(10):1230-1236. http://d.old.wanfangdata.com.cn/Periodical/bgxb201110010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views(7309) PDF downloads(228) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return