Volume 30 Issue 3
Jul 2016
Turn off MathJax
Article Contents
ZHANG Xiao-Jun, WANG An-Xiang, GAO Bin, CHEN Chang-Le. Phonon Dispersion of Molybdenum under High-Pressure:A Study by Modified Analytic Embedded Atom Method[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 258-264. doi: 10.11858/gywlxb.2016.03.012
Citation: ZHANG Xiao-Jun, WANG An-Xiang, GAO Bin, CHEN Chang-Le. Phonon Dispersion of Molybdenum under High-Pressure:A Study by Modified Analytic Embedded Atom Method[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 258-264. doi: 10.11858/gywlxb.2016.03.012

Phonon Dispersion of Molybdenum under High-Pressure:A Study by Modified Analytic Embedded Atom Method

doi: 10.11858/gywlxb.2016.03.012
  • Received Date: 26 Jun 2014
  • Rev Recd Date: 01 Nov 2014
  • Based on the modified analytic embedded atom method, we calculated the atomic force constants and the dynamical matrices of the metal molybdenum under different high pressures, and then reproduced the experimental results of the phonon dispersion in bcc molybdenum along three highly symmetrical directions [00ζ], [0ζζ] and [ζζζ] under pressures.In addition, we predicted the phonon dispersion curves of molybdenum under high pressures of 60, 80 and 100 GPa.The results show that our simulated results at high pressures of 0.1 MPa, 17 GPa and 37 GPa agree fairly well with the available experimental results, especially for lower frequencies rather than within the first Brillouin zone boundaries.The shapes of the dispersion curves predicted under high pressures of 60, 80 and 100 GPa are very similar to that under normal pressures.The vibration frequencies of molybdenum in all vibration branches under high pressures are all larger than the results achieved under normal pressures, and they increase along with the high pressures of 60, 80 and 100 GPa.

     

  • loading
  • [1]
    XIE Y, ZHANG J M.Atomistic simulation of phonon dispersion for body-centred cubic alkali metals[J].Can J Phys, 2008, 86(6):801-805. doi: 10.1139/p07-200
    [2]
    WANG Y, HECTOR L G, ZHANG H, et al.Thermodynamics of the Ce γ-α transition:Density functional study[J].Phys Rev B, 2008, 78(10):104113. doi: 10.1103/PhysRevB.78.104113
    [3]
    WONG J, KRISCH M, FARBER D L, et al.Crystal dynamics of fcc Pu-Ga alloy by high-resolution inelastic X-ray scattering[J].Phys Rev B, 2005, 72(6):064115. doi: 10.1103/PhysRevB.72.064115
    [4]
    ADITYA M V.Phonon dispersion in equiatomic Li-based binary alloys[J].Chin Phys Lett, 2008, 25(2):654-657. doi: 10.1088/0256-307X/25/2/081
    [5]
    DANIEL L F, KRISCH M, ANTONANGELI D, et al.Lattice dynamics of molybdenum at high pressure[J].Phys Rev Lett, 2006, 96(4):115502. http://www.ncbi.nlm.nih.gov/pubmed/16605838
    [6]
    MITTAL R, CHAPLOT S L, CHOUDHURY N, et al.Inelastic neutron scattering, lattice dynamics and high-pressure phase stability in LuPO4 and YbPO4[J].J Phys-Condens Mat, 2007, 19(44):6202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4268e7dd9fe2916f69dad9da7e674e6b
    [7]
    FANG H, LIU B, GU M.High-pressure lattice dynamic and thermodynamic properties of Ir by first-principles calculation[J].Physica B, 2010, 405(2):732-737. doi: 10.1016/j.physb.2009.09.096
    [8]
    HU C E, ZENG Z Y, ZHANG L.Theoretical investigation of the high pressure structure, lattice dynamics, phase transition, and thermal equation of state of titanium metal[J].J Appl Phys, 2010, 107(9):093509. doi: 10.1063/1.3407560
    [9]
    KAZANC S.The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy[J].Can J Phys, 2013, 91(10):833-838. doi: 10.1139/cjp-2013-0090
    [10]
    ZHANG X J, CHEN C L, FENG F L.High-pressure phonon dispersion of copper by using the modified analytic embedded atom method[J].Chin Phys B, 2013, 22(9):096301. doi: 10.1088/1674-1056/22/9/096301
    [11]
    MORSE P M.Diatomic molecules according to the wave mechanics.Ⅱ.Vibrational levels[J].Phys Rev, 1929, 34(1):57-64. doi: 10.1103/PhysRev.34.57
    [12]
    MURRELL J N, SORBIE K S.New analytic form for potential energy curves of stable diatomic states[J].J Chem Soc Faraday Trans, 1974, 70(2):1552-1556. doi: 10.1039-f29848001349/
    [13]
    SEBETCI A.A density functional study of bare and hydrogenated platinum clusters[J].Chem Phys, 2006, 331(1):9-18. doi: 10.1016/j.chemphys.2006.09.037
    [14]
    DAW M S, BASKES M I.Embedded atom method:A review derivation and application to impurities, surface and other defects in metals[J].Phys Rev B, 1984, 29(12):6443-6447. doi: 10.1103/PhysRevB.29.6443
    [15]
    BOYKIN T B, VOGL P.Dielectric response of molecules in empirical tight-binding theory[J].Phys Rev B, 2002, 65(3):035202. doi: 10.1103/PhysRevE.65.035202
    [16]
    OUYANG Y F, ZHANG B W.Analytic embedded atom potentials for bcc metals:application to calculating the thermodynamic data of bcc alloys[J].Phys Lett A, 1994, 192(1):79-86. doi: 10.1016/0375-9601(94)91020-0
    [17]
    HU W Y, SHU X L, ZHANG B W.Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials[J].Comput Mater Sci, 2002, 23(1):175-189. doi: 10.1016-S0927-0256(01)00238-5/
    [18]
    MA F, ZHANG J M, XU K W.Theoretical analysis of interface energy for unrelaxed Ag (001)/Ni (001) twist interface boundaries with MAEAM[J].Surf Interface Anal, 2004, 36(4):355-359. doi: 10.1002/(ISSN)1096-9918
    [19]
    ZHANG J M, WEI X M, XIN H, et al.Atomic scale calculation of energies of Cu (001) twist boundaries[J].Chin Phys, 2004, 14(5):1015-1020. http://www.cqvip.com/qk/85823A/200505/15563507.html
    [20]
    DOVE M T.Introducton to lattice dynamics[M].New York:Cambridge University Press, 1993.
    [21]
    KAZANC S, OZGEN S.Pressure effect on phonon frequencies in some transition metals:A molecular dynamics study[J].Physica B, 2005, 365(1/2/3/4):185-192. http://www.sciencedirect.com/science/article/pii/S0921452605007635
    [22]
    KAZANC S, OZGEN S, ADIGUZEL O.Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy[J].Physica B, 2003, 334(3/4):375-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=25e1c91a62a84acdf6f72ed0a0c18520
    [23]
    ROSE J H, SMITH J R, GUINEA F, et al.Universal features of the equation of state of metals[J].Phys Rev B, 1984, 29(6):2963-2969. doi: 10.1103/PhysRevB.29.2963
    [24]
    VINET P, ROSE J H, FERRANTE J, et al.Universal features of the equation of state of solids[J].J Phys-Condens Mat, 1989, 1(11):1941-1963. doi: 10.1088/0953-8984/1/11/002
    [25]
    MAO H K, BELL P M, SHANER J W, et al.Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar[J].J Appl Phys, 1978, 49(6):3276-3283. doi: 10.1063/1.325277
    [26]
    WOODS A D B, CHEN S H.Lattice dynamics of molybdenum[J].Solid State Commun, 1964, 2(8):233-242. doi: 10.1016/0038-1098(64)90370-9
    [27]
    FARBER D L, KRISCH M, ANTONANGELI D, et al.Lattice dynamics of molybdenum at high pressure[J].Phys Rev Lett, 2006, 96(11):115502. doi: 10.1103/PhysRevLett.96.115502
    [28]
    ZHANG X J, CHEN C L.Pressure dependence of phonon dispersion in bcc tungsten[J].Chin J Phys, 2013, 51(2):359-367. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7628db22f842d9ea10399b2de6b9f39b
    [29]
    TAIOLI S, CAZORLA C, GILLAN M J, et al.Melting curve of tantalum from first principles[J].Phys Rev B, 2007, 75(21):214103. doi: 10.1103/PhysRevB.75.214103
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(6622) PDF downloads(169) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return