Volume 30 Issue 3
Jul 2016
Turn off MathJax
Article Contents
HUANG Yong, XIE Li-Feng, YE Jing-Fang, LU Chang-Bo, AN Gao-Jun, XIONG Chun-Hua, LI Yong-Jian, XU Chun. Experimental Study on Diesel Fuel Film Dispersed by Shock Wave and High-Speed Airflow[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 227-234. doi: 10.11858/gywlxb.2016.03.008
Citation: HUANG Yong, XIE Li-Feng, YE Jing-Fang, LU Chang-Bo, AN Gao-Jun, XIONG Chun-Hua, LI Yong-Jian, XU Chun. Experimental Study on Diesel Fuel Film Dispersed by Shock Wave and High-Speed Airflow[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 227-234. doi: 10.11858/gywlxb.2016.03.008

Experimental Study on Diesel Fuel Film Dispersed by Shock Wave and High-Speed Airflow

doi: 10.11858/gywlxb.2016.03.008
  • Received Date: 16 Jun 2015
  • Rev Recd Date: 28 Aug 2015
  • The dispersion principle and atomization process of four kinds of diesel fuel films induced by shock wave and high-speed airflow was studied, employing a vertical shock tube.The pressure and velocity of the shock wave, before and after reaching the diesel fuel films, were measured by a pressure acquisition system.The dispersion process of the diesel fuel films was recorded by a shadow-graph system.The experimental results show that the shock wave in 1.12 Mach was weakened to a high-speed airflow after impacting on the diesel fuel films.The atomization effect of diesel fuel film 1 and 2 is better, while its viscosity is low.In contrast, diesel fuel film 3 and 4 with a higher viscosity were broken up into big pieces and silks after the dispersion process.It can also be concluded that the diesel fuel films with a lower viscosity have a larger initial dispersion velocity, whereas it will be reduced faster.Apparently, the diesel fuel films with a higher viscosity have a smaller velocity because they have an obstructive effect on the aerodynamic force.Moreover, the corresponding dispersion distance and velocity decreased with the increase of the viscosity.

     

  • loading
  • [1]
    WEATHERFORD W D, NAEGELI D W.Research on fire-resistant diesel fuel flammability mitigation mechanisms:ADA130743[R].San Antonio, TX:Southwest Research Inst, 1982.
    [2]
    MARTY S D, SCHMITIGAL J.Fire resistant fuel:ADA508203[R].San Antonio, TX:Southwest Research Inst, 2009.
    [3]
    林璐.俄军"不燃烧"柴油研制概括[J].军需物资油料, 2006, (2):63-64.

    Lin L.Development process of "no combustion" diesel oil of Russian Army[J].Supplies of Oil, 2006, (2):63-64.
    [4]
    陆守香, 秦友花.激波诱导的液滴变形与破碎[J].高压物理学报, 2000, 14(2):151-154. doi: 10.3969/j.issn.1000-5773.2000.02.012

    LU S X, QIN Y H.Deformation and breakup of droplets behind shock wave[J].Chinese Journal of High Pressure Physics, 2000, 14(2):151-154. doi: 10.3969/j.issn.1000-5773.2000.02.012
    [5]
    HSIANG L P, FAETH G M.Drop properties after secondary breakup[J].Int J Multiphase Flow, 1993, 19(5):721-735. doi: 10.1016/0301-9322(93)90039-W
    [6]
    HSIANG L P, FAETH G M.Drop deformation and breakup due to shock wave and steady disturbance[J].Int J Multiphase Flow, 1995, 21(4):545-560. doi: 10.1016/0301-9322(94)00095-2
    [7]
    SAMIRANT M, SMEET G, BARAS C, et al.Dynamic measurements in combustible and detonable aerosols[J].Propell Explos Pyrot, 1989, 14:47-56. doi: 10.1002/(ISSN)1521-4087
    [8]
    耿继辉, 叶经方, 王健, 等.激波诱导液滴变形和破碎现象实验研究[J].工程热物理学报, 2003, 24(5):797-800. doi: 10.3321/j.issn:0253-231X.2003.05.023

    GENG J H, YE J F, WANG J, et al.Experimental investigation on phenomena of shock wave-induced droplet deformation and breakup[J].Journal of Engineering Thermophysics, 2003, 24(5):797-800. doi: 10.3321/j.issn:0253-231X.2003.05.023
    [9]
    ANTIPAS G S E.Modelling of the break up mechanism in gas atomization of liquid metals (Part Ⅰ):The surface wave formation model[J].Comput Mater Sci, 2006, 35(4):416-422. http://www.sciencedirect.com/science/article/pii/S0927025605001023
    [10]
    李斌, 解立峰, 韩志伟, 等.激波作用下水膜变形和雾化实验研究[J].实验力学, 2011, 26(4):464-470. http://d.old.wanfangdata.com.cn/Periodical/sylx201104018

    LI B, XIE L F, HAN Z W, et al.Study on deformation and atomization of water films induced by shock wave[J].Journal of Experimental Mechanics, 2011, 26(4):464-470. http://d.old.wanfangdata.com.cn/Periodical/sylx201104018
    [11]
    张丽丽, 周慎杰, 陈举华.冲击式气流喷嘴雾化模型[J].武汉理工大学学报, 2007, 29(8):135-138. http://d.old.wanfangdata.com.cn/Periodical/whgydxxb200708034

    ZHANG L L, ZHOU S J, CHEN J H.Atomizing model of air-blast impingement atomizer[J].Journal of Wuhan University of Technology, 2007, 29(8):135-138. http://d.old.wanfangdata.com.cn/Periodical/whgydxxb200708034
    [12]
    王海洋, 解立峰, 李斌, 等.激波抛撒水膜程成雾参数实验研究[J].实验流体力学, 2013, 27(2):50-55. doi: 10.3969/j.issn.1672-9897.2013.02.010

    WANG H Y, XIE L F, LI B, et al.Experimental study on parameters of water particles in the cloud from liquid film induced by shock wave[J].Journal of Experiments in Fluid Mechanics, 2013, 27(2):50-55. doi: 10.3969/j.issn.1672-9897.2013.02.010
    [13]
    HSIANG L P, FAETH G M.Near-limit drop deformation and secondary breakup[J].Int J Multiphase Flow, 1992, 18(5):635-652. doi: 10.1016/0301-9322(92)90036-G
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(6421) PDF downloads(183) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return