Volume 30 Issue 1
Apr 2016
Turn off MathJax
Article Contents
LIU Lei, BI Yan, XU Ji-An. Latest Developments in Experimental Research on Structural andPhysical Properties of Liquids under Extreme Conditions[J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 7-19. doi: 10.11858/gywlxb.2016.01.002
Citation: LIU Lei, BI Yan, XU Ji-An. Latest Developments in Experimental Research on Structural andPhysical Properties of Liquids under Extreme Conditions[J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 7-19. doi: 10.11858/gywlxb.2016.01.002

Latest Developments in Experimental Research on Structural andPhysical Properties of Liquids under Extreme Conditions

doi: 10.11858/gywlxb.2016.01.002
  • Received Date: 18 Nov 2014
  • Rev Recd Date: 04 Jan 2015
  • The structural and physical properties of liquids under extreme conditions are of great interest in the research of condensed matters, material science and earth science.Due to the absence of long range order, numerous great challenges are being faced in experimental and theoretical studies on liquid under extreme conditions.Our knowledge of the structural and physical properties of liquids under extreme conditions is very much limited compared with those crystals.In this paper, we summarized the latest technical advances and scientific discoveries in the study of the structure, density and viscosity of liquids under high pressures and at high temperatures, which may facilitate the investigation of the structural and physical properties of liquids in the years ahead.

     

  • loading
  • [1]
    MCMILLAN P F, WILSON M, WILDING M C, et al.Polyamorphism and liquid-liquid phase transitions:challenges for experiment and theory[J]. J Phys Condens Matter, 2007, 19(41):415101. doi: 10.1088/0953-8984/19/41/415101
    [2]
    POOLE P H, GRANDE T, ANGELL C A, et al.Polymorphic phase transitions in liquids and glasses[J]. Science, 1997, 275(5298):322-323. doi: 10.1126/science.275.5298.322
    [3]
    BRAZHKIN V V, POPOVA S V, VOLOSHIN R N.Pressure-temperature phase diagram of molten elements:selenium, sulfur and iodine[J]. Physica B, 1999, 265(1/2/3/4):64-71. http://www.sciencedirect.com/science/article/pii/S0921452698013180
    [4]
    MUKHERJEE G D, BOEHLER R.High-pressure melting curve of nitrogen and the liquid-liquid phase transition[J]. Phys Rev Lett, 2007, 99(22):225701. doi: 10.1103/PhysRevLett.99.225701
    [5]
    GONCHAROV A F, CROWHURST J C, STRUZHKIN V V, et al.Triple point on the melting curve and polymorphism of nitrogen at high pressure[J]. Phys Rev Lett, 2008, 101(9):095502. doi: 10.1103/PhysRevLett.101.095502
    [6]
    GREGORYANZ E, GONCHAROV A F.Comment on "high-pressure melting curve of nitrogen and the liquid-liquid phase transition"[J]. Phys Rev Lett, 2009, 102(4):049601. doi: 10.1103/PhysRevLett.102.049601
    [7]
    SPAULDING D K, MCWILLIAMS R S, JEANLOZ R, et al.Evidence for a phase transition in silicate melt at extreme pressure and temperature conditions[J]. Phys Rev Lett, 2012, 108(6):065701. doi: 10.1103/PhysRevLett.108.065701
    [8]
    BOATES B, BONEV S A.Demixing instability in dense molten MgSiO3 and the phase diagram of MgO[J]. Phys Rev Lett, 2013, 110(13):135504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9f1842d9001a6bd65e057d97439ffb4e
    [9]
    KATAYAMA Y, MIZUTANI T, UTSUMI W, et al.A first-order liquid-liquid phase transition in phosphorus[J]. Nature, 2000, 403:170-173. doi: 10.1038/35003143
    [10]
    KATAYAMA Y, INAMURA Y, MIZUTANI T, et al.Macroscopic separation of dense fluid phase and liquid phase of phosphorus[J]. Science, 2004, 306(5697):848-851. doi: 10.1126/science.1102735
    [11]
    MCMILLAN P F, STANLEY H E.Fluid phases:going supercritical[J]. Nat Phys, 2010, 6:479-480. doi: 10.1038/nphys1711
    [12]
    SIMEONI G G, BRYK T, GORELLI F A, et al.The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids[J]. Nat Phys, 2010, 6:503-507. doi: 10.1038/nphys1683
    [13]
    MONACO G, FALCONI S, CRICHTON W A, et al.Nature of the first-order phase transition in fluid phosphorus at high temperature and pressure[J]. Phys Rev Lett, 2003, 90(25):255701. doi: 10.1103/PhysRevLett.90.255701
    [14]
    GREAVES G N, WILDING M C, FEARN S, et al.Detection of frst-order liquid/liquid phase transitions in yttrium oxide-aluminum oxide melts[J]. Science, 2013, 322(5901):566-570.
    [15]
    YAMADA A, WANG Y, INOUE T, et al.High-pressure X-ray diffraction studies on the structure of liquid silicate using a Paris-Edinburgh type large volume press[J]. Rev Sci Instrum, 2011, 82(1):015103. doi: 10.1063/1.3514087
    [16]
    PALINKAS G.Analytic approximations for the incoherent X-ray intensities of the atoms from Ca to Am[J]. Acta Crystallogr Sect A, 1973, 29(1):10-12. doi: 10.1107/S0567739473000021
    [17]
    IBERS J A, HAMILTON W C.International tables for X-ray crystallography[M]. Birmingham:Kynoch Press, 1974.
    [18]
    CADIEN A, HU Q Y, MENG Y, et al.First-order liquid-liquid phase transition in cerium[J]. Phys Rev Lett, 2013, 110(12):125503. doi: 10.1103/PhysRevLett.110.125503
    [19]
    LIPP M J, JENEI Z, RUDDLE D, et al.Equation of state measurements by radiography provide evidence for a liquid-liquid phase transition in cerium[J]. J Phys Conf Ser, 2014, 500:032011. doi: 10.1088/1742-6596/500/3/032011
    [20]
    MEADE C, HEMLEY R J, MAO H K.High-pressure X-ray diffraction of SiO2 glass[J]. Phys Rev Lett, 1992, 69(9):1387-1390. doi: 10.1103/PhysRevLett.69.1387
    [21]
    SATO T, FUNAMORI N.Sixfold-coordinated amorphous polymorph of SiO2 under high pressure[J]. Phys Rev Lett, 2008, 101(25):255502. doi: 10.1103/PhysRevLett.101.255502
    [22]
    BENMORE C J, SOIGNARD E, AMIN S A, et al.Structural and topological changes in silica glass at pressure[J]. Phys Rev B, 2010, 81(5):054105. doi: 10.1103/PhysRevB.81.054105
    [23]
    SATO T, FUNAMORI N.High-pressure structural transformation of SiO2 glass up to 100GPa[J]. Phys Rev B, 2010, 82(18):184102. doi: 10.1103/PhysRevB.82.184102
    [24]
    MURAKAMI M, BASS J D.Spectroscopic evidence for ultrahigh-pressure polymorphism in SiO2 glass[J]. Phys Rev Lett, 2010, 104(2):025504. doi: 10.1103/PhysRevLett.104.025504
    [25]
    SATO T, FUNAMORI N, YAGI T.Helium penetrates into silica glass and reduces its compressibility[J]. Nat Commun, 2011, 2:345. doi: 10.1038/ncomms1343
    [26]
    SHEN G, MEI Q, PRAKAPENKA V B, et al.Effect of helium on structure and compression behavior of SiO2 glass[J]. Proc Natl Acad Sci USA, 2011, 108(15):6004-6007. doi: 10.1073/pnas.1102361108
    [27]
    DUFFY T S.Crystallography's journey to the deep Earth[J]. Nature, 2014, 506(7489):427-429. doi: 10.1038/506427a
    [28]
    LIU L, KONO Y, KENNEY-BENSON C, et al.Chain breakage in liquid sulfur at high pressures and high temperatures[J]. Phys Rev B, 2014, 89(17):174201. doi: 10.1103/PhysRevB.89.174201
    [29]
    SANLOUP C, DREWITT J W E, CREPISSON C, et al.Structure and density of molten fayalite at high pressure[J]. Geochim Cosmochim Ac, 2013, 118:118-128. doi: 10.1016/j.gca.2013.05.012
    [30]
    SANLOUP C, DREWITT J W E, KONOPKOVA Z, et al.Structural change in molten basalt at deep mantle conditions[J]. Nature, 2013, 503:104-107. doi: 10.1038/nature12668
    [31]
    YAMADA A, INOUE T, URAKAWA S, et al.In situ X-ray diffraction study on pressure-induced structural changes in hydrous forsterite and enstatite melts[J]. Earth Planet Sci Lett, 2011, 308(1/2):115-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=69676dcabb121c94dcea81f3ddb06bfd
    [32]
    SAKAMAKI T, WANG Y, PARK C, et al.Structure of jadeite melt at high pressures up to 4.9GPa[J]. J Appl Phys, 2012, 111(11):112623. doi: 10.1063/1.4726246
    [33]
    SAKAMAKI T, WANG Y, PARK C, et al.Contrasting behavior of intermediate-range order structures in jadeite glass and melt[J]. Phys Earth Planet Inter, 2014, 228:281-286. doi: 10.1016/j.pepi.2014.01.008
    [34]
    DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al.Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6Mbar[J]. Nat Commun, 2012, 3:1163. doi: 10.1038/ncomms2160
    [35]
    KATAYAMA Y, TSUJI K, CHEN J Q, et al.Density of liquid tellurium under high pressure[J]. J Non-Cryst Solids, 1993, 156/157/158:687-690. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_2393858
    [36]
    KATAYAMA Y.Density measurements of non-crystalline materials under high pressure and high temperature[J]. High Pressure Res, 1996, 14:383-391. doi: 10.1080/08957959608201424
    [37]
    KATAYAMA Y, TSUJI K, SHIMOMURA O, et al.Density measurements of liquid under high pressure and high temperature[J]. J Synchrotron Rad, 1998, 5:1023-1025. doi: 10.1107/S0909049597015239
    [38]
    NISHIDA K, OHTANI E, URAKAWA S, et al.Density measurement of liquid FeS at high pressures using synchrotron X-ray absorption[J]. Am Mineral, 2011, 96(5/6):864-868. http://adsabs.harvard.edu/abs/2011AmMin..96..864N
    [39]
    CHANTLER C T.Theoretical form factor, attenuation, and scattering tabulation for Z=1-92 from E=1-10eV to E=0.4-1.0MeV[J]. J Phys Chem Ref Data, 1995, 24:71-643. doi: 10.1063/1.555974
    [40]
    PAVESE A.Pressure-volume-temperature equations of state:a comparative study based on numerical simulations[J]. Phys Chem Miner, 2002, 29(1):43-51. doi: 10.1007/s002690100204
    [41]
    BIRCH F.Elasticity and constitution of the Earth's interior[J]. J Geophys Res, 1952, 57(2):227-286. doi: 10.1029/JZ057i002p00227
    [42]
    POIRIER J P.Light elements in the Earth's outer core:a critical review[J]. Phys Earth Planet Inter, 1994, 85(3/4):319-337. doi: 10.1016-0031-9201(94)90120-1/
    [43]
    DZIEWONSKI A M, ANDERSON D L.Preliminary reference Earth model[J]. Phys Earth Planet Inter, 1981, 25(4):297-356. doi: 10.1016/0031-9201(81)90046-7
    [44]
    SANLOUP C, GUYOT F, GILLET P, et al.Density measurements of liquid Fe-S alloys at high-pressure[J]. Geophys Res Lett, 2000, 27(6):811-814. doi: 10.1029/1999GL008431
    [45]
    SANLOUP C, FIQUET G, GREGORYANZ E, et al.Effect of Si on liquid Fe compressibility:implications for sound velocity in core materials[J]. Geophys Res Lett, 2004, 31:L07604. doi: 10.1029/2004GL019526/full
    [46]
    SHIMOYAMA Y, TERASAKI H, OHTANI E, et al.Density of Fe-3.5wt%C liquid at high pressure and temperature and the effect of carbon on the density of the molten iron[J]. Phys Earth Planet Inter, 2013, 224:77-82. doi: 10.1016/j.pepi.2013.08.003
    [47]
    SANLOUP C, VAN WESTRENEN W, DASGUPTA R, et al.Compressibility change in iron-rich melt and implications for core formation models[J]. Earth Planet Sci Lett, 2011, 306(1/2):118-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=516be97ead5ed2080bf11f32d7f9d947
    [48]
    DUFFY T S.Mineralogy at the extremes[J]. Nature, 2008, 451:269-270. doi: 10.1038/nature06584
    [49]
    SAKAMAKI T, OHTANI E, URAKAWA S, et al.Density of high-Ti basalt magma at high pressure and origin of heterogeneities in the lunar mantle[J]. Earth Planet Sci Lett, 2010, 299(3/4):285-289. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=53bac4fe81acf6337acab577b45bd03c
    [50]
    SAKAMAKI T, OHTANI E, URAKAWA S, et al.Measurement of hydrous peridotite magma density at high pressure using the X-ray absorption method[J]. Earth Planet Sci Lett, 2009, 287(3/4):293-297. http://www.sciencedirect.com/science/article/pii/S0012821X09004488
    [51]
    SAKAMAKI T, OHTANI E, URAKAWA S, et al.Density of dry peridotite magma at high pressure using an X-ray absorption method[J]. Am Mineral, 2010, 95:144-147. doi: 10.2138/am.2010.3143
    [52]
    CREPISSON C, MORARD G, BUREAU H, et al.Magmas trapped at the continental lithosphere-asthenosphere boundary[J]. Earth Planet Sci Lett, 2014, 393:105-112. doi: 10.1016/j.epsl.2014.02.048
    [53]
    SHEN G, SATA N, NEWVILLE M, et al.Molar volumes of molten indium at high pressures measured in a diamond anvil cell[J]. Appl Phys Lett, 2002, 81(8):1411-1413. doi: 10.1063/1.1499737
    [54]
    HONG X, SHEN G, PRAKAPENKA V B, et al.Density measurements of noncrystalline materials at high pressure with diamond anvil cell[J]. Rev Sci Instrum, 2007, 78(10):103905. doi: 10.1063/1.2795662
    [55]
    SATO T, FUNAMORI N.High-pressure in situ density measurement of low-Z noncrystalline materials with a diamond-anvil cell by an x-ray absorption method[J]. Rev Sci Instrum, 2008, 79(7):073906. doi: 10.1063/1.2953093
    [56]
    FUNAKOSHI K, NOZAWA A.Development of a method for measuring the density of liquid sulfur at high pressures using the falling-sphere technique[J]. Rev Sci Instrum, 2012, 83(10):103908. doi: 10.1063/1.4757570
    [57]
    DOBSON D P, JONES A P, RABE R, et al.In-situ measurement of viscosity and density of carbonate melts at high pressure[J]. Earth Planet Sci Lett, 1996, 143:207-215. doi: 10.1016/0012-821X(96)00139-2
    [58]
    KAPLOW R, STRONG S L, AVERBACH B L.Radial density functions for liquid mercury and lead[J]. Phys Rev A, 1965, 138:1336. doi: 10.1103/PhysRev.138.A1336
    [59]
    EGGERT J H, WECK G, LOUBEYRE P, et al.Quantitative structure factor and density measurements of high-pressure fluids in diamond anvil cells by X-ray diffraction:argon and water[J]. Phys Rev B, 2002, 65(17):174105. doi: 10.1103/PhysRevB.65.174105
    [60]
    SHEN G, RIVERS M L, SUTTON S R, et al.The structure of amorphous iron at high pressures to 67 GPa measured in a diamond anvil cell[J]. Phys Earth Planet Inter, 2004, 143/144:481-495. doi: 10.1016/j.pepi.2003.05.004
    [61]
    BALOG P S, SECCO R A, RUBIE D C.Density measurements of liquids at high pressure:modifications to the sink/float method by using composite spheres, and application to Fe-10wt%S[J]. High Pressure Res, 2001, 21(5):237-261. doi: 10.1080/08957950108201026
    [62]
    BALOG P S, SECCO R A, RUBIE D C, et al.Equation of state of liquid Fe-10wt%S:implications for the metallic cores of planetary bodies[J]. J Geophys Res, 2003, 108:2124. doi: 10.1029/2001JB001646/full
    [63]
    TATEYAMA R, OHTANI E, TERASAKI H, et al.Density measurements of liquid Fe-Si alloys at high pressure using the sink-float method[J]. Phys Chem Miner, 2011, 38(10):801-807. doi: 10.1007/s00269-011-0452-1
    [64]
    NISHIDA K, TERASAKI H, OHTANI E, et al.The effect of sulfur content on density of the liquid Fe-S at high pressure[J]. Phys Chem Miner, 2008, 35(7):417-423. doi: 10.1007/s00269-008-0236-4
    [65]
    ZHA C S, HEMLEY R J, MAO H K, et al.Acoustic velocities and refractive index of SiO2 glass to 57.5GPa by Brillouin scattering[J]. Phys Rev B, 1994, 50(18):13105-13112. doi: 10.1103/PhysRevB.50.13105
    [66]
    JIA R, LI F, LI M, et al.Brillouin scattering studies of liquid argon at high temperatures and high pressures[J]. J Chem Phys, 2008, 129(15):154503. doi: 10.1063/1.2993256
    [67]
    BRAZHKIN V V, KANZAKI M, FUNAKOSHI K, et al.Viscosity behavior spanning four orders of magnitude in As-S melts under high pressure[J]. Phys Rev Lett, 2009, 102(11):115901. doi: 10.1103/PhysRevLett.102.115901
    [68]
    BROOKS R F, DINSDALE A T, QUESTED P N.The measurement of viscosity of alloys:a review of methods, data and models[J]. Meas Sci Technol, 2005, 16(2):354-362. doi: 10.1088/0957-0233/16/2/005
    [69]
    URAKAWA S, TERASAKI H, FUNAKOSHI K, et al.Radiographic study on the viscosity of the Fe-FeS melts at the pressure of 5 to 7GPa[J]. Am Mineral, 2001, 86(4):578-582. doi: 10.2138/am-2001-0420
    [70]
    KONO Y, PARK C, KENNEY-BENSON C, et al.Toward comprehensive studies of liquids at high pressures and high temperatures:combined structure, elastic wave velocity, and viscosity measurements in the Paris-Edinburgh cell[J]. Phys Earth Planet Inter, 2014, 228:269-280. doi: 10.1016/j.pepi.2013.09.006
    [71]
    FUNAKOSHI K, NOZAWA A.Development of a method for measuring the density of liquid sulfur at high pressures using the falling-sphere technique[J]. Rev Sci Instrum, 2012, 83(10):103908. doi: 10.1063/1.4757570
    [72]
    KONO Y, KENNEY-BENSON C, PARK C, et al.Anomaly in the viscosity of liquid KCl at high pressures[J]. Phys Rev B, 2013, 87(2):024302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cc6248e2f5fb05b4c918ded9e38a8f9e
    [73]
    BRIZARD M, MEGHARFI M, MAHE E, et al.Design of a high precision falling-ball viscometer[J]. Rev Sci Instrum, 2005, 76(2):025109. doi: 10.1063/1.1851471
    [74]
    BRAZHKIN V V, FUNAKOSHI K, KANZAKI M, et al.Nonviscous metallic liquid Se[J]. Phys Rev Lett, 2007, 99(24):245901. doi: 10.1103/PhysRevLett.99.245901
    [75]
    BRAZHKIN V V, FARNAN I, FUNAKOSHI K, et al.Structural transformations and anomalous viscosity in the B2O3 melt under high pressure[J]. Phys Rev Lett, 2010, 105(11):115701. doi: 10.1103/PhysRevLett.105.115701
    [76]
    BRAZHKIN V V, KATAYAMA Y, KANZAKI M, et al.Pressure-induced structural transformations and the anomalous behavior of the viscosity in network chalcogenide and oxide melts[J]. JETP Lett, 2011, 94(2):161-170. doi: 10.1134/S0021364011140050
    [77]
    BRAZHKIN V V, KATAYAMA Y, KONDRIN M V, et al.AsS melt under pressure:one substance, three liquids[J]. Phys Rev Lett, 2008, 100(14):145701. doi: 10.1103/PhysRevLett.100.145701
    [78]
    KONO Y, KENNEY-BENSON C, HUMMER D, et al.Ultralow viscosity of carbonate melts at high pressures[J]. Nat Commun, 2014, 5:5091. doi: 10.1038/ncomms6091
    [79]
    VAIDYA S N, KENNEDY G C.Compressibility of 27 halides to 45kbar[J]. J Phys Chem Solids, 1971, 32(5):951-964. doi: 10.1016/S0022-3697(71)80340-2
    [80]
    SUZUKI A, OHTANI E, TERASAKI H, et al.Pressure and temperature dependence of the viscosity of a NaAlSi2O6 melt[J]. Phys Chem Miner, 2011, 38(1):59-64. doi: 10.1007/s00269-010-0381-4
    [81]
    SUZUKI A, OHTANI E, FUNAKOSHI K, et al.Viscosity of albite melt at high pressure and high temperature[J]. Phys Chem Miner, 2002, 29(3):159-165. doi: 10.1007/s00269-001-0216-4
    [82]
    SUZUKI A, OHTANI E, TERASAKI H, et al.Viscosity of silicate melts in CaMgSi2O6-NaAlSi2O6 system at high pressure[J]. Phys Chem Miner, 2005, 32(2):140-145. doi: 10.1007/s00269-005-0452-0
    [83]
    MORI S, OHTANI E, SUZUKI A, et al.Viscosity of the albite melt to 7GPa at 2 000K[J]. Earth Planet Sci Lett, 2000, 175(1/2):87-92. http://www.sciencedirect.com/science/article/pii/S0012821X99002848
    [84]
    FUNAKOSHI K, SUZUKI A, TERASAKI H.In situ viscosity measurements of albite melt under high pressure[J]. J Phys Condens Matter, 2002, 14(44):11343. doi: 10.1088/0953-8984/14/44/479
    [85]
    TINKER D, LESHER C E, BAXTER G M, et al.High-pressure viscometry of polymerized silicate melts and limitations of the Eyring equation[J]. Am Mineral, 2004, 89(11/12):1701-1708.
    [86]
    ALLWARDT J R, STEBBINS J F, TERASAKI H, et al.Effect of structural transitions on properties of high-pressure silicate melts:27Al NMR, glass densities, and melt viscosities[J]. Am Mineral, 2007, 92(7):1093-1104. doi: 10.2138/am.2007.2530
    [87]
    POE B T, MCMILLAN P F, RUBIE D C, et al.Silicon and oxygen self-diffusivities in silicate liquids measured to 15 gigapascals and 2 800 kelvin[J]. Science, 1997, 276(5316):1245-1248. doi: 10.1126/science.276.5316.1245
    [88]
    WANG Y, SAKAMAKI T, SKINNER L B, et al.Atomistic insight into viscosity and density of silicate melts under pressure[J]. Nat Commun, 2014, 5:3241. doi: 10.1038/ncomms4241
    [89]
    TERASAKI H, KATO T, URAKAWA S, et al.The effect of temperature, pressure, and sulfur content on viscosity of the Fe-FeS melt[J]. Earth Planet Sci Lett, 2001, 190(1/2):93-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d8ea005bb2515cced1aeb9adf83b05ea
    [90]
    LIEBSKE C, SCHMICKLER B, TERASAKI H, et al.Viscosity of peridotite liquid up to 13GPa:implications for magma ocean viscosities[J]. Earth Planet Sci Lett, 2005, 240(3/4):589-604. http://www.sciencedirect.com/science/article/pii/S0012821X05006825
    [91]
    PIERMARINI G J, FORMAN R A, BLOCK S.Viscosity measurements in the diamond anvil pressure cell[J]. Rev Sci Instrum, 1978, 49(8):1061-1066. doi: 10.1063/1.1135514
    [92]
    KING H E Jr, HERBOLZHEIMER E, COOK R L.The diamond-anvil cell as a high-pressure viscometer[J]. J Appl Phys, 1992, 71(5):2071-2081. doi: 10.1063/1.351157
    [93]
    ABRAMSON E H.The shear viscosity of supercritical oxygen at high pressure[J]. J Chem Phys, 2005, 122(8):084501. doi: 10.1063/1.1849166
    [94]
    ABRAMSON E H.Viscosity of carbon dioxide measured to a pressure of 8GPa and temperature of 673K[J]. Phys Rev B, 2009, 80(2):021201. doi: 10.1103/PhysRevE.80.021201
    [95]
    NAKAMURA Y, TAKIMOTO A, MATSUI M.Rheological study of solidified lubricant oils under very high pressure by observing microsphere deformation and viscosity prediction[J]. Lubr Sci, 2010, 22(10):417-429. doi: 10.1002/ls.110
    [96]
    BRIDGMAN P W.The viscosity of liquids under pressure[J]. Proc Natl Acad Sci USA, 1925, 11(10):603-606. doi: 10.1073/pnas.11.10.603
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(7728) PDF downloads(154) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return