Volume 29 Issue 5
Dec 2015
Turn off MathJax
Article Contents
ZHANG Qing-Hua, WANG Min, TAN Guo-Long, KONG Pan-Pan, LI Yan-Chun, LI Xiao-Dong, LIU Jing, JIN Chang-Qing, YU Ri-Cheng. Structural Behavior of PbFe12O19 under Pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 363-368. doi: 10.11858/gywlxb.2015.05.006
Citation: ZHANG Qing-Hua, WANG Min, TAN Guo-Long, KONG Pan-Pan, LI Yan-Chun, LI Xiao-Dong, LIU Jing, JIN Chang-Qing, YU Ri-Cheng. Structural Behavior of PbFe12O19 under Pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 363-368. doi: 10.11858/gywlxb.2015.05.006

Structural Behavior of PbFe12O19 under Pressure

doi: 10.11858/gywlxb.2015.05.006
More Information
  • Author Bio:

    ZHANG Qing-Hua(1986—), male, bachelor, student, major in high-pressure structural transition and electron microscopy.E-mail:zhqh_wl@163.com

  • Corresponding author: YU Ri-Cheng(1964—), male, Ph.D, professor, major in high-pressure structural transition and electron microscopy.E-mail: rcyu@aphy.iphy.ac.cn
  • This work investigated the structural behavior of PbFe12O19 under high pressure by in situ angular dispersive X-ray diffraction (ADXD) measurements up to 55.3 GPa.The linear incompressibility Ba0=997(38) GPa and Bc0=556(22) GPa, and bulk modulus B0=254(8) GPa are obtained by fitting the Birch-Murnaghan equation of state with the unit-cell parameters versus pressure below 29.2 GPa.The anisotropic incompressibility can be attributed to the layered-stacking structure of PbFe12O19; the relative stiffness of PbFe12O19 can be ascribed to the dense atomic arrangement and the decreasing c/2a ratio.In addition, the ambient structure evolves to another structure above 42.7 GPa under compression and recovers below 32.3 GPa during releasing of pressure.

     

  • loading
  • [1]
    Janasi S R, Rodrigues D, Landgraf F J G, et al. Magnetic properties of coprecipitated barium ferrite powders as a function of synthesis conditions[J]. IEEE T Magn, 2000, 36(5): 3327-3329. doi: 10.1109/20.908788
    [2]
    Pullar R C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics[J]. Prog Mater Sci, 2012, 57(7): 1191-1334. doi: 10.1016/j.pmatsci.2012.04.001
    [3]
    Kimura T, Lawes G, Ramirez A P. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures[J]. Phys Rev Lett, 2005, 94(13): 137201. doi: 10.1103/PhysRevLett.94.137201
    [4]
    Kimura T. Spiral magnets as magnetoelectrics[J]. Annu Rev Mate Res, 2007, 37: 387-413. doi: 10.1146/annurev.matsci.37.052506.084259
    [5]
    Oliver S A, Chen M L, Kozulin I, et al. Structure and magnetic properties of barium hexaferrite films deposited at low oxygen pressures[J]. J Magn Magn Mater, 2000, 213(3): 326-334. doi: 10.1016/S0304-8853(00)00004-4
    [6]
    Jacobo S E, Civale L, Blesa M A. Evolution of the magnetic properties during the thermal treatment of barium hexaferrite precursors obtained by coprecipitation from barium ferrate(Ⅵ)solutions[J]. J Magn Magn Mater, 2003, 260(1/2): 37-41. http://www.sciencedirect.com/science/article/pii/S0304885301009246
    [7]
    Thompson G K, Evans B J. The structure-property relationships in m-type hexaferrites: Hyperfine interactions and bulk magnetic properties[J]. J Appl Phys, 1993, 73(10): 6295-6297. doi: 10.1063/1.352675
    [8]
    Pardavi-Horvath M. Microwave applications of soft ferrites[J]. J Magn Magn Mater, 2000, 215/216: 171-183. doi: 10.1016/S0304-8853(00)00106-2
    [9]
    Tan G L, Wang M. Multiferroic PbFe12O19 ceramics[J]. J Electroceram, 2011, 26(1/2/3/4): 170-174. doi: 10.1007/s10832-011-9641-z
    [10]
    Hammersley A P, Svensson S O, Hanfland M, et al. Two-dimensional detector software: From real detector to idealised image or two-theta scan[J]. High Pressure Res, 1996, 14(4/5/6): 235-248. doi: 10.1080/08957959608201408
    [11]
    Holland T J B, Redfern S A T. Unit cell refinement from powder diffraction data: The use of regression diagnostics[J]. Mineral Mag, 1997, 61(1): 65-77. http://www.degruyter.com/view/j/minmag.1997.61.issue-1/minmag.1997.061.404.07/minmag.1997.061.404.07.xml?format=INT
    [12]
    Meade C, Jeanloz R. Static compression of Ca(OH)2 at room-temperature-Observations of amorphization and equation of state measurements to 10.7 GPa[J]. Geophys Res Lett, 1990, 17(8): 1157-1160. doi: 10.1029/GL017i008p01157/full
    [13]
    Birch F. Finite strain isotherm and velocities for single-crystal and polycrystalline nacl at high-pressures and 300 K[J]. J Geophys Res, 1978, 83(NB3): 1257-1268. doi: 10.1029/JB083iB03p01257
    [14]
    Tsuchiya T, Kawamura K. Systematics of elasticity: Ab initio study in b1-type alkaline earth oxides[J]. J Chem Phys, 2001, 114(22): 10086-10093. doi: 10.1063/1.1371498
    [15]
    Liu H, Caldwell W A, Benedetti L R, et al. Static compression of alpha-Fe2O3: Linear incompressibility of lattice parameters and high-pressure transformations[J]. Phys Chem Miner, 2003, 30(9): 582-588. doi: 10.1007/s00269-003-0351-1
    [16]
    Jiang J Z, Olsen J S, Gerward L, et al. Enhanced bulk modulus and reduced transition pressure in gamma-Fe2O3 nanocrystals[J]. Europhys Lett, 1998, 44(5): 620-626. doi: 10.1209/epl/i1998-00563-6
    [17]
    Maslen E N, Streltsov V A, Streltsova N R, et al. Synchrotron X-ray study of the electron-density in alpha-Fe2O3[J]. Acta Cryst, 1994, B50(4): 435-441. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ebec582bde3ca55861253cb9901d632b
    [18]
    Manjon F J, Errandonea D. Pressure-induced structural phase transitions in materials and earth sciences[J]. Phys Status Solidi B, 2009, 246(1): 9-31. http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2009PSSBR.246....9M
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views(7420) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return