Volume 29 Issue 5
Dec 2015
Turn off MathJax
Article Contents
LI Ying, DU Jian-Guo, XIE Chao, ZHOU Zhi-Hua. Effect of Temperature on Fe-Mg Partition of Garnet during the High Pressure and High Temperature Metamorphism of Pelitic Rock[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 329-336. doi: 10.11858/gywlxb.2015.05.002
Citation: LI Ying, DU Jian-Guo, XIE Chao, ZHOU Zhi-Hua. Effect of Temperature on Fe-Mg Partition of Garnet during the High Pressure and High Temperature Metamorphism of Pelitic Rock[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 329-336. doi: 10.11858/gywlxb.2015.05.002

Effect of Temperature on Fe-Mg Partition of Garnet during the High Pressure and High Temperature Metamorphism of Pelitic Rock

doi: 10.11858/gywlxb.2015.05.002
More Information
  • Author Bio:

    LI Ying(1978—), male, doctor, associate professor, major in fluid geochemistry and experimental geochemistry.E-mail:subduction6@hotmail.com

  • The effects of temperature on Fe-Mg compositions of garnet in a natural pelitic system were studied experimentally at temperatures from 700 to 780 ℃ and pressures from 2.1 to 2.9 GPa.The garnets formed in the run products were mainly characterized by magnesian and ferreous compositions.The contents of pyrope and almandine are more than 88%(mass fraction) in all the garnet particles analyzed, whereas grossular and spessartine are less than 12%.The concentrations of FeO and MgO of garnet in the run products show significant linear relationship with experimental temperatures but which is not observed with pressures.The results determine the Fe-Mg partition trend with temperature in a natural pelitic rock with complex chemical compositions, which is useful for the identification of metamorphic temperature for eclogite facies rocks with a pelitic protolith composition.

     

  • loading
  • [1]
    Nimis P, Grütter H. Internally consistent geothermometers for garnet peridotites and pyroxenites[J]. Contrib Mineral Petr, 2010, 159(3): 411-427. doi: 10.1007/s00410-009-0455-9
    [2]
    Müller T, Dohmen R, Becker H W, et al. Fe-Mg interdiffusion rates in clinopyroxene: Experimental data and implications for Fe-Mg exchange geothermometers[J]. Contrib Mineral Petr, 2013, 166(6): 1563-1576. doi: 10.1007/s00410-013-0941-y
    [3]
    Matjuschkin V, Brey G P, Höfer H E, et al. The influence of Fe3+ on garnet-orfthopyroxene and garnet-olivine geothermometers[J]. Contrib Mineral Petr, 2014, 167(2): 1-10. doi: 10.1007/s00410-014-0972-z
    [4]
    Ague J J, Carlson W D. Metamorphism as garnet sees it: The kinetics of nucleation and growth, equilibration, and diffusional relaxation[J]. Elements, 2013, 9(6): 439-445. doi: 10.2113/gselements.9.6.439
    [5]
    Spear F S. The duration of near-peak metamorphism from diffusion modelling of garnet zoning[J]. J Metamorph Geol, 2014, 32(8): 903-914. doi: 10.1111/jmg.12099
    [6]
    Faak K, Coogan L A, Chakraborty S. A new Mg-in-plagioclase geospeedometer for the determination of cooling rates of mafic rocks[J]. Geochim Cosmochim Ac, 2014, 140: 691-707. doi: 10.1016/j.gca.2014.06.005
    [7]
    Das K, Tomioka N, Bose S. On oriented ilmenite needles in garnet porphyroblasts from deep crustal granulites: Implications for fluid evolution and cooling history[J]. Lithos, 2013, 156: 230-240. http://www.sciencedirect.com/science/article/pii/S0024493712004434
    [8]
    Viete D R, Hermann J, Lister G S, et al. The nature and origin of the Barrovian metamorphism, Scotland: Diffusion length scales in garnet and inferred thermal time scales[J]. J Geol Soc, 2011, 168(1): 115-132. doi: 10.1144/0016-76492009-087
    [9]
    Likhanov I I, Reverdatto V V, Kozlov P S, et al. Three metamorphic events in the precambrian p-T-t history of the Transangarian Yenisey ridge recorded in garnet grains in metapelites[J]. Petrology, 2013, 21(6): 561-578. doi: 10.1134/S0869591113060040
    [10]
    Chakraborty S, Ganguly J. Compositional zoning and cation diffusion in aluminosilicate garnets[C]//Ganguly J. Diffusion, Atomic Ordering and Mass Transport, Advances in Physical Geochemistry. Berlin: Springer Berlin Heidelberg, 1991: 121-175.
    [11]
    Spear F S. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths[M]. Chantilly, VA: Mineralogical Society of America, 1993: 350.
    [12]
    Ellis D J, Green D H. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria[J]. Contrib Mineral Petr, 1979, 71(1): 13-22. doi: 10.1007/BF00371878
    [13]
    Berman R G. Mixing properties of Ca-Mg-Fe-Mn garnets[J]. Am Mineral, 1990, 75(3/4): 328-344. http://ci.nii.ac.jp/naid/80005202158
    [14]
    Tasumi Y, Hamilton D L, Nesbitt R W. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks[J]. J Volcanol Geoth Res, 1986, 29(1): 293-309. http://www.sciencedirect.com/science/article/pii/0377027386900491
    [15]
    Kogiso T, Tatsumi Y, Nakano S. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts[J]. Earth Planet Sc Lett, 1997, 148(1/2): 193-205. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V61-3SWJNSY-G&_user=6894003&_coverDate=04%2F30%2F1997&_rdoc=15&_fmt=high&_orig=browse&_srch=doc-info(%23toc%235801%231997%23998519998%23567141%23FLP%23display%23Volume)&_cdi=5801&_sort=d&_docancho
    [16]
    Aizawa Y, Tatsumi Y, Yamada H. Element transport by dehydration of subducted sediments: Implication for arc and ocean island magmatism[J]. Isl Arc, 1999, 8(1): 38-46. doi: 10.1046/j.1440-1738.1999.00217.x
    [17]
    李营, 唐红峰, 刘丛强, 等.泥质岩脱水作用的高压差热实验研究[J].岩石学报, 2005, 21(3): 986-992. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200503036

    Li Y, Tang H F, Liu C Q, et al. Experimental study on the dehydration of pelite by high-pressure defferential thermal analysis[J]. Acta Petrol Sin, 2005, 21(3): 986-992. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200503036
    [18]
    Li Y, Massonne H J, Willner A, et al. Dehydration of clastic sediments in subduction zones: Theoretical study using thermodynamic data of minerals[J]. Isl Arc, 2008, 17(4): 577-590. doi: 10.1111/j.1440-1738.2008.00640.x
    [19]
    Li Y, Du J G. Thermodynamic calculation on the phase transformation and water release of subducted sediment from 10 to 35 kbar[J]. J Phys Chem Solids, 2010, 71(8): 1077-1083. doi: 10.1016/j.jpcs.2010.03.010
    [20]
    Zou Y, Irifune T. Phase relations in Mg3Cr2Si3O12 and formation of majoritic knorringite garnet at high pressure and high temperature[J]. J Miner Petrol Sci, 2012, 107(5): 197-205. doi: 10.2465/jmps.120318
    [21]
    Bobrov A V, Litvin Y A, Kuzyura A V, et al. Partitioning of trace elements between Na-bearing majoritic garnet and melt at 8.5 GPa and 1 500-1 900 ℃[J]. Lithos, 2014, 189: 159-166. doi: 10.1016/j.lithos.2013.11.003
    [22]
    唐红峰, 刘丛强, 谢国刚.区域变质作用中岩石的质量迁移和元素活动——以庐山双桥山群变泥质岩为例[J].地质论评, 2000, 46(3): 245-254. http://www.cnki.com.cn/Article/CJFDTotal-DZLP200003004.htm

    Tang H F, Liu C Q, Xie G G. Mass transfer and element mobility of rocks during regional metamorphism-A case study of metamorphosed pelites from the shuangqiaoshan group in Lushan[J]. Geol Rev, 2000, 46(3): 245-254. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-DZLP200003004.htm
    [23]
    Mirwald P W, Getting I C, Kennedy G C. Low-friction cell for piston-cylinder high-pressure apparatus[J]. J Geophys Res, 1975, 80(11): 1519-1525. doi: 10.1029/JB080i011p01519
    [24]
    Massonne H J, Schreyer W. High-pressure syntheses and X-ray properties of white micas in the system K2O-MgO-Al2O3-SiO2-H2O[J]. Neues Jb Miner Abh, 1986, 153(2): 177-215. http://www.researchgate.net/publication/291980972_High-pressure_syntheses_and_X-ray_properties_of_white_micas_in_the_system_K2O-MgO-Al2O3-SiO2-H2O
    [25]
    Kitahara S, Kennedy G C. The quartz-coesite transition[J]. J Geophys Res, 1964, 69(24): 5395-5400. doi: 10.1029/JZ069i024p05395
    [26]
    Mirwald P W, Massonne H J. The low-high quartz and quartz-coesite transition to 40 kbar between 600 and 1 600 ℃ and some reconnaissance data on the effect of NaAlO2 component on the low quartz-coesite transition[J]. J Geophys Res, 1980, 85(B12): 6983-6990. doi: 10.1029/JB085iB12p06983
    [27]
    Akella J. Quartz-coesite transition and the comparative friction measurements in piston-cylinder apparatus using talk-alsimag-glass(TAG)and NaCl cells[J]. Neues Jahrb Mineral Monatsh, 1979, 5: 217-224. http://www.researchgate.net/publication/286335823_Quartz_coesite_transition_and_the_comparative_friction_measurements_in_piston-cylinder_apparatus_using_talc-alsimag-glass_TAG_and_NaCl_high-pressure_cells
    [28]
    Ganguly J, Cheng W J, Chakraborty S. Cation diffusion in aluminosilicate garnets: Experimental determination in pyroxene-almandine diffusion couples[J]. Contrib Mineral Petr, 1998, 131(2/3): 171-180.
    [29]
    Holland T J B, Powell R. An internally consistent thermodynamic data set for phases of petrological interest[J]. J Metamorph Geol, 1998, 16(3): 309-343. doi: 10.1111/j.1525-1314.1998.00140.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views(6806) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return