Volume 29 Issue 3
Jul 2015
Turn off MathJax
Article Contents
WANG Yong-Kun, HE Duan-Wei, CHEN Hong-Yang, WANG Wen-Dan, LIU Fang-Ming, HE Fei, ZHANG Yu, HU Yi, KOU Zi-li, PENG Fang, GAO Shang-Pan, MA Ying-Gong, YANG Xing-Hui. Preliminary Experiment Exploring for Improving Pressure Limit of Two-Stage Hydrostatic High-Pressure Apparatus Using Confining Pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 223-231. doi: 10.11858/gywlxb.2015.03.010
Citation: WANG Yong-Kun, HE Duan-Wei, CHEN Hong-Yang, WANG Wen-Dan, LIU Fang-Ming, HE Fei, ZHANG Yu, HU Yi, KOU Zi-li, PENG Fang, GAO Shang-Pan, MA Ying-Gong, YANG Xing-Hui. Preliminary Experiment Exploring for Improving Pressure Limit of Two-Stage Hydrostatic High-Pressure Apparatus Using Confining Pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 223-231. doi: 10.11858/gywlxb.2015.03.010

Preliminary Experiment Exploring for Improving Pressure Limit of Two-Stage Hydrostatic High-Pressure Apparatus Using Confining Pressure

doi: 10.11858/gywlxb.2015.03.010
  • Received Date: 08 Dec 2014
  • Rev Recd Date: 07 May 2014
  • In this study, we choose different confining pressure materials, pressure transmitting WC-Co platforms and WC-Co wafers, to calibrate pressure of 10/4 (The edge length of octahedral transmitting pressure medium is 10 mm/the truncated angle edge length of WC-Co cemented carbide anvil is 4 mm) assembly of two-stage 6-8 type hydrostatic high-pressure apparatus based on the hinge-type cubic-anvil 6×8 MN press at room temperature, using phase transition of ZnTe under high pressure.The experimental results show that the pyrophyllite is a relatively ideal confining pressure material, but it can not pressurize obviously because of the strength limitations of platforms and wafers.By combining simplified mechanics model of 2 kinds of presses, we also find out that the large-area gasket, formed by pre-gasket and initial confining pressure material together, consumes most of the loading, and the gap is oversized between the first anvils.Therefore, we did not observe any improvement of the 10/4 assembly pressure limit in our experiments.

     

  • loading
  • [1]
    Fukura S, Nakagawa T, Kaga H. High spatial resolution photoluminescence and Raman spectroscopic measurements of a natural polycrystalline diamond and carbonado[J]. Diamond Relat Mater, 2005, 14(11): 1950-1954. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84bf34b894c66492a350f411a1dea260
    [2]
    Hemley R J, Soos Z G, Hanfland M, et al. Charge-transfer states in dense hydrogen charge-transfer states in dense hydrogen[J]. Nature, 1994, 369: 384-391. doi: 10.1038/369384a0
    [3]
    Ma Y, Eremets M, Oganov A R, et al. Transparent dense sodium[J]. Nature, 2009, 458: 182-185. doi: 10.1038/nature07786
    [4]
    Oganov A R, Ono S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in earth's D″ layer[J]. Nature, 2004, 430: 445-448. doi: 10.1038/nature02701
    [5]
    Qin J Q, He D W, Wang J H, et al. Is rhenium diboride a superhard material?[J]. Adv Mater, 2008, 20(24): 4780-4783. doi: 10.1002/adma.200801471
    [6]
    Tian Y J, Xu B, Yu D L, et al. Ultrahard nanotwinned cubic boron nitride[J]. Nature, 2013, 493: 385-493. doi: 10.1038/nature11728
    [7]
    Xu C, He D W, Wang H K, et al. Nano-polycrysalline diamond formation under ultrahigh pressure[J]. Int J Refract metals Hard Mater, 2013, 36: 232-237. doi: 10.1016/j.ijrmhm.2012.09.004
    [8]
    Han Q G, Ma H G, Zhou L, et al. Finite element design of double bevel anvils of large volume cubic high pressure apparatus[J]. Rev Sci Instrum, 2007, 78(11): 354-359. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5341ad93d8919691406f19542822cb39
    [9]
    Weidner D J, Wang Y, Vaughat M T. Strength of diamond[J]. Science, 1994, 266(5184): 419-422. doi: 10.1126/science.266.5184.419
    [10]
    Dubrovinsky L, Dubrovinskaia N. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar[J]. Nat Commun, 2012, 3: 1163-1166. doi: 10.1038/ncomms2160
    [11]
    王文丹, 贺端威, 王海阔, 等.二级6-8型大腔体装置的高压发生效率机理研究[J].物理学报, 2010, 59(5): 3107-3115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201005030

    Wang W D, He D W, Wang H K, et al. Reaserch on pressure generation efficiency of 6-8 type multianvil high pressure apparatus[J]. Acta Phys Sin, 2010, 59(5): 3107-3015. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201005030
    [12]
    Gao C X, Han Y H, MA Y Z, et al. Accurate measurements of high pressure resistivity in a diamond anvil cell[J]. Rev Sci Instrum, 2005, 76(8): 1035-1039.
    [13]
    Liu L G. Disproportionation of kyanite to corundum plus stishovite at high pressure and temperature[J]. Earth Planet Sci Lett, 1974, 24(2): 224-228.
    [14]
    Liu X, Shieh S R, Fleet M E, et al. High-pressure study on lead fluorapatite[J]. Am Miner, 2008, 93(10): 1581-1584. doi: 10.2138/am.2008.2816
    [15]
    Khvostantsev L G. A verkh-niz(up-down)toroid device for generation of high pressure[J]. High Temp High press, 1984, 16(2): 165-169.
    [16]
    Sverjensky D A. Europium redox equilibria in aqueous solution[J]. Earth Planet Sci Lett, 1984, 67(1): 70-78.
    [17]
    Syono Y, Manghani M H. High-Pressure Research: Application to Earth and Planetary Sciences[M]. Washington: AGU, 1992: 19.
    [18]
    Dobson D P, Ju L M, Alfe D, et al. A new belt-type apparatus for neutron-based rheological measurements at gigapascal pressures[J]. High Press Res, 2005, 25(2): 107-118. doi: 10.1080/08957950500143500
    [19]
    Tange Y, Irifune T, Funakoshi I. Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils[J]. High Press Res, 2008, 28(3): 245-54. doi: 10.1080/08957950802208936
    [20]
    Kunimoto T, Irifune T. Pressure generation to 125 GPa using a 6-8-2 type multianvil apparatus with nano-polycrystalline diamond anvils[J]. J Phys: Condens Mater, 2010, 25(1): 2150-2160. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001850854
    [21]
    贺端威, 王福龙, 寇自力, 等.用于产生超高压的新型装置: 中国, 200710048839.2[P]. 2007-10-16.

    He D W, Wang F L, Kou Z L, et al. New device used to produce ultra high pressur: China, 2007, 200710048839.2[P]. 2007-10-16. (in Chinese)
    [22]
    王福龙, 贺端威, 房雷鸣, 等.基于铰链式六面顶压机的二级6-8型大腔体静高压装[J].物理学报, 2008, 57: 5429-5434. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200809014

    Wang F L, He D W, Fang L M, et al. Design and assembley of split-sphere high pressure apparatus based on the hinge-type cubic-anvil press[J]. Acta Phys Sin, 2008, 57: 5429-5334. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200809014
    [23]
    Wang H K, He D W, Tan N, et al. Note: An anvil-preformed gasket system to extend the pressure range for large volume cubic presses[J]. Rev Sci Instrum, 2010, 81(11): 1134-1139.
    [24]
    Wang H K, He D W, Yan X Z, et al. Quantitative measurements of pressure gradients for the pyrophyllite and magnesium oxide pressure-transmitting mediums to 8 GPa in a large-volume cubic cell[J]. High Press Res, 2011, 31(4): 581-591. doi: 10.1080/08957959.2011.614238
    [25]
    管俊伟, 贺端威, 王海阔, 等.力学结构及末级压砧硬度对八面体压腔高压发生效率的影响[J].物理学报, 2012, 61(10): 100701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201210014

    Guan J W, He D W, Wang H K, et al. Influence of mechanical configuration and hardness of last stage anvil on high pressure producing efficiency for octahedral cell[J]. Acta Phys sin, 2012, 61: 100701. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201210014
    [26]
    王海阔, 贺端威.一种新型大腔体高压装置: 中国, 201110091480.3[P]. 2011-09-21.

    Wang H K, He D W. A new large-volume high pressure apparatus: China, 201110091480.3[P]. 2011-09-21. (in Chinese)
    [27]
    贺端威, 王海阔, 谭宁, 等.一种顶锤-预密封边高压装置: 中国, 2010101428204.7[P]. 2010-08-18.

    He D W, Wang H K, Tan N, et al. An anvil-performed gasket appratus: China, 2010101428204.7[P]. 2010-08-18. (in Chinese)
    [28]
    曾绍连, 李卫.碳化钨增强钢铁基耐磨复合材料的研究和应用[J].特种铸造及有色合金, 2007, 27(6): 441-444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tzzzjyshj200706011

    Ceng L S, Li W. Research and application of tungsten carbide reinforced steel matrix wear resistant composite material[J]. Special casting and nonferrous alloys, 2007, 27(6): 441-444. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tzzzjyshj200706011
    [29]
    高富强, 杨军, 甯尤军.围压对脆性材料力学性能影响的研究现状[J].有色金属, 2009, 61(2): 46-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-ks200902015

    Gao F Q, Yang J, Ning Y J. Research status in the effect of confining pressure on brittle material mechanics[J]. Non-ferrous metal, 2009, 61(2): 46-49. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-ks200902015
    [30]
    McWilliams R S, Eggert J H, Hicks D G, et al. Strength effects in diamond under shock compression from 0.1 to 1 TPa[J]. Phys Rev B, 2010, 81(1): 014111. doi: 10.1103/PhysRevB.81.014111
    [31]
    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 640 Mbar[J]. Nat commun, 2012, 3: 1163. doi: 10.1038/ncomms2160
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(6212) PDF downloads(240) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return