Volume 29 Issue 3
Jul 2015
Turn off MathJax
Article Contents
CHEN Hao, CHEN Xiong, ZHOU Chang-Sheng, XUE Hai-Feng. Magnetohydrodynamic Numerical Study in a Supersonic Plasma Torch[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 185-190. doi: 10.11858/gywlxb.2015.03.004
Citation: CHEN Hao, CHEN Xiong, ZHOU Chang-Sheng, XUE Hai-Feng. Magnetohydrodynamic Numerical Study in a Supersonic Plasma Torch[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 185-190. doi: 10.11858/gywlxb.2015.03.004

Magnetohydrodynamic Numerical Study in a Supersonic Plasma Torch

doi: 10.11858/gywlxb.2015.03.004
  • Received Date: 13 Mar 2013
  • Rev Recd Date: 23 Oct 2014
  • A laval nozzle with a throat diameter of 2 mm and working current 100 mA was introduced, and on the basis of 2D rotational symmetry model, numerical simulation was taken for the plasma flow in and outside the plasma torch.By adoptting the magnetic vector potential magnetohydrodynamic (MHD) model for the internal nozzle, we avoided the complex integral calculation of self-induction magnetic field intensity, obtained the nozzle internal field coupling and external jet flow state.The impact of nozzle internal electromagnetic field on plasma acceleration and the jet development process were analyzed.The results show that the plasma experiences a 3-stage processes from subsonic to transonic, and to supersonic (2.3Ma).It provides a theoretical basis for the industrial application of supersonic plasma torch.

     

  • loading
  • [1]
    Gaitonde D V. Simulation of supersonic nozzle flows with plasma-based control[C]//39th AIAA Fluid Dynamics Conference. San antonio: AIAA, 2009: 1-29.
    [2]
    Wang H X, Wei F Z, Murphy A B, et al. Numerical investigation of the plasma flow through the constrictor of arc-heated thrusters[J]. J Phys D: Appl Phys, 2012, 45(23): 1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd2af7572f2057140dc7a695cce88d36
    [3]
    Pfender E, Fincke J, Spores R. Entrainment of cold gas into thermal plasma jets[J]. Plasma Chem Plasma Process, 1991, 11(4): 529-543. doi: 10.1007/BF01447164
    [4]
    Selezneva S E, Sember V, Gravelle D V, et al. Spectroscopic validation of the supersonic plasma jet model[J]. J Phys D: Appl Phys, 2002, 35(12): 1338-1349. doi: 10.1088/0022-3727/35/12/310
    [5]
    Selezneva S E, Boulos M I, van de Sanden M C M, et al. Stationary supersonic plasma expansion: Continuum fluid mechanics versus direct simulation Monte Carlo method[J]. J Phys D: Appl Phys, 2002, 35(12): 1362-1372. doi: 10.1088/0022-3727/35/12/312
    [6]
    张冠中, 谢巍, 王俊华.常压下超音速等离子体射流的数值模拟[J].工程力学, 2003, 20(5): 139-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx200305027

    Zhang G Z, Xie W, Wang J H. Numerical simulation of supersonic plasma jet under normal pressures[J]. Engineering mechanics, 2003, 20(5): 139-143. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx200305027
    [7]
    Han P, Chen X. Modeling of the subsonic-supersonic flow and heat transfer in a DC arc plasma torch[J]. Plasma Chem Plasma Process, 2001, 21(2): 249-264. doi: 10.1023/A:1007000431702
    [8]
    Yuan X Q, Zhao T Z, Guo W K, et al. Plasma flow characteristics inside the supersonic DC plasma torch[J]. Int J Mod Phys E, 2005, 14(2): 225-238. doi: 10.1142/S0218301305003016
    [9]
    袁行球, 李辉, 赵太泽, 等.超音速等离子体炬的数值模拟[J].物理学报, 2004, 53(3): 788-792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200403026

    Yuan X Q, Li H, Zhao T Z, et al. Numerical study of supersonic plasma torch[J]. Acta Physica Sinica, 2004, 53(3): 788-792. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200403026
    [10]
    Freton P, Gonzalez J J, Gleizes A, et al. Numerical and experimental study of a plasma cutting torch[J]. J Phys D: Appl Phys, 2002, 35(2): 2139-2148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=87ad98e78f423bc14b9bed3627c10aee
    [11]
    Lago F, Gonzalez J J, Freton P, et al. A numerical modeling of an electric arc and its interaction with the anode: Part Ⅰ. The two-dimensional model[J]. J Phys D: Appl Phys, 2004, 37(6): 883-897. doi: 10.1088/0022-3727/37/6/013
    [12]
    Bini R, Monno M, Boulos M I. Numerical and experimental study of transferred arcs in argon[J]. J Phys D: Appl Phys, 2006, 39(15): 3253-3266. doi: 10.1088/0022-3727/39/15/007
    [13]
    Murphy A B. Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas[J]. Plasma Chem Plasma Process, 1995, 15(2): 279-307. doi: 10.1007/BF01459700
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(6707) PDF downloads(311) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return