Volume 29 Issue 3
Jul 2015
Turn off MathJax
Article Contents
ZHANG Hong-Ping, LI Mu, KAN Ming-Xian, WANG Gang-Hua, CHONG Tao. Mechanical and Thermal Dissipation Analysis of Aluminum in Quasi-Isentropic Compression[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 169-177. doi: 10.11858/gywlxb.2015.03.002
Citation: ZHANG Hong-Ping, LI Mu, KAN Ming-Xian, WANG Gang-Hua, CHONG Tao. Mechanical and Thermal Dissipation Analysis of Aluminum in Quasi-Isentropic Compression[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 169-177. doi: 10.11858/gywlxb.2015.03.002

Mechanical and Thermal Dissipation Analysis of Aluminum in Quasi-Isentropic Compression

doi: 10.11858/gywlxb.2015.03.002
  • Received Date: 30 Aug 2013
  • Rev Recd Date: 04 Nov 2013
  • To study the pressure-specific volume (p-v) reference line and equation of state from the stress-strain curve of material at high pressure, the viscous dissipation due to loading strain rate and thermal dissipation due to irreversible heat conduction in quasi-isentropic compression experiment (ICE) were discussed and analyzed.A backward integration and forward integration method was used to analyze the data in laser driving and magnetic pressure driving ICE with different strain rates.For viscous dissipation, the sound speed, stress-strain curve, temperature and entropy production during loading were obtained, and the relations between high strain rate and these physical quantities were discussed.For thermal dissipation, through the calculation of the thermal conduction and SCG constitutive model, the variation of temperature and the corresponding yield strength, shear module and sound speed were presented.The results show that:in the laser driving ICE with a high strain rate of 108 s-1), the temperature variation caused by high strain rate is about 180 K, and the entropy production due to heat conduction is about 250 J/(kg·K); and in the magnetic pressure driving with a relatively low strain rate of 105 s-1, the entropy production is less than 8 J/(kg·K).

     

  • loading
  • [1]
    Seagle C T, Davis J P, Martin M R, et al. Shock-ramp compression: Ramp compression of shock-melted tin[J]. Appl Phys Lett, 2013, 102(24): 244104. doi: 10.1063/1.4811745
    [2]
    Davis J P. Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa[J]. J Appl Phys, 2006, 99: 103512. doi: 10.1063/1.2196110
    [3]
    张红平, 王桂吉, 李牧, 等.准等熵压缩下金属钽的屈服强度分析[J].高压物理学报, 2011, 25(4): 321-326. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201104007

    Zhang H P, Wang G J, Li M, et al. Yield strength analysis of tantalum in quasi-isentropic compression[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 321-326. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201104007
    [4]
    Ding J L, Asay J R. Material characterization with ramp wave experiments[J]. J Appl Phys, 2007, 101(7): 073517. doi: 10.1063/1.2709878
    [5]
    Smith R F, Eggert J H, Jankowski A, et al. Stiff response of aluminum under ultrafast shockless compression to 110 GPa[J]. Phys Rev Lett, 2007, 98(6): 065701. doi: 10.1103/PhysRevLett.98.065701
    [6]
    Davis J P. Charice 1.0: An IDL application for characteristics-based inverse analysis of isentropic compression experiments, SAND 2007-4984[R]. Albuquerque: Sandia National Laboratories, 2007.
    [7]
    Wang G J, Zhao J H, Zhang H P, et al. Advances in quasi-isentropic compression experiments at institute of fluid physics of CAEP[J]. Eur Phys J Special Topics, 2012, 206(1): 163-172. doi: 10.1140/epjst/e2012-01597-y
    [8]
    Steinberg D J, Lund C M. A constitutive model for strain rates from 10-4 to 106 s-1[J]. J Appl Phys, 1989, 65(4): 1528-1533. doi: 10.1063/1.342968
    [9]
    Steinberg D J. A rate-dependent constitutive model for molybdenum[J]. J Appl Phys, 1993, 74(6): 3827-3831. doi: 10.1063/1.355316
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views(6637) PDF downloads(238) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return