Volume 29 Issue 2
Jun 2015
Turn off MathJax
Article Contents
DUAN Yao-Yong, GUO Yong-Hui, QIU Ai-Ci. Maximum Compression Ratios of Elemental Solids and Corresponding Thermodynamic Quantities on Shock Adiabat[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 136-142. doi: 10.11858/gywlxb.2015.02.008
Citation: DUAN Yao-Yong, GUO Yong-Hui, QIU Ai-Ci. Maximum Compression Ratios of Elemental Solids and Corresponding Thermodynamic Quantities on Shock Adiabat[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 136-142. doi: 10.11858/gywlxb.2015.02.008

Maximum Compression Ratios of Elemental Solids and Corresponding Thermodynamic Quantities on Shock Adiabat

doi: 10.11858/gywlxb.2015.02.008
  • Received Date: 01 Feb 2013
  • Rev Recd Date: 04 May 2013
  • A three-term equation of state for elemental solid materials is established, in which the cold energy and pressure are approximated by a fraction of the numerical solution of Thomas-Fermi theory at absolute zero-temperature, the thermal energy and pressure of ions are obtained from Cowan model, and the thermal energy and pressure of electrons are built on the basis of the screened hydrogenic average-atom model of Faussurier.Numerical results show that this model is applicable for elemental solid materials when their compression ratios of density are greater than 2.Moreover, the maximum compression ratios, the corresponding temperature and pressure on the shock adiabat are calculated and compared with other models for elemental solid materials with nuclear charge from 3 to 70.These results can be used to contrast with strong shock wave compression experiments.

     

  • loading
  • [1]
    Remington B A, Drake R P, Ryutov D D. Experimental astrophysics with high power lasers and Z pinches[J]. Rev Mod Phys, 2006, 78(3): 755-807. doi: 10.1103/RevModPhys.78.755
    [2]
    Batani D, Balducci A, Beretta D, et al. Equation of state data for gold in the pressure range < 10 TPa[J]. Phys Rev B, 2000, 61(14): 9287-9294. doi: 10.1103/PhysRevB.61.9287
    [3]
    Matzen M, Sweeney M A, Adams R G, et al. Pulsed-power-driven high energy density physics and inertial confinement fusion research[J]. Phys Plasmas, 2005, 12(5): 055503. doi: 10.1063/1.1891746
    [4]
    Burdiak G C, Lebedev S V, Drake R P, et al. The production and evolution of multiple converging radiative shock waves in gas-filled cylindrical liner Z-pinch experiments[J]. High Energ Dens Phys, 2013, 9(1): 52-62. doi: 10.1016/j.hedp.2012.10.006
    [5]
    Feynman R P, Metropolis N, Teller E. Equations of state of elements based on the generalized Fermi-Thomas theory[J]. Phys Rev, 1949, 75(10): 1561-1573. doi: 10.1103/PhysRev.75.1561
    [6]
    Rozsnyai B F. Relativistic Hartree-Fock-Slater calculations for arbitrary temperature amd matter density[J]. Phys Rev A, 1972, 5(3): 1137-1149. doi: 10.1103/PhysRevA.5.1137
    [7]
    More R M, Warren K H, Young D A, et al. A new quotidian equation of state(QEOS)for hot dense matter[J]. Phys Fluids, 1988, 31(10): 3059-3078. doi: 10.1063/1.866963
    [8]
    Perrot F, Dharma-wardana M W C. Equation of state and transport properties of an interacting multi-species plasma: Application to a multiply ionized Al plasma[J]. Phys Rev E, 1995, 52(5): 5352-5367. doi: 10.1103/PhysRevE.52.5352
    [9]
    Nikiforov A F, Novikov V G, Solomyannaya A D. Analytical wave functions in self-consistent field models for high-temperature plasma[J]. Laser Part Beams, 1990, 14(4): 765-0779. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=LPB14_04\LPB\LPB14_04\S0263034600010454h.xml
    [10]
    Liberman D A. Self-consistent-field for condensed matter[J]. Phys Rev B, 1979, 20(12): 4981-4989. doi: 10.1103/PhysRevB.20.4981
    [11]
    Pain J C. Shell-structure effects on high-pressure Rankine-Hugoniot shock adiabats[J]. High Energ Dens Phys, 2007, 3(1): 204-210. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000000613432
    [12]
    Blenski T, Ciichocki B. Variational theory of average-atom and superconfigurations in quantum plasmas[J]. Phys Rev E, 2007, 75(5): 056402. doi: 10.1103/PhysRevE.75.056402
    [13]
    Faussurier G, Blancard C, Renaudin P. Equation of state of dense plasmas using a screened-hydrogenic model with l-splitting[J]. High Energ Dens Phys, 2008, 4(3): 114-123. http://www.sciencedirect.com/science/article/pii/S1574181808000190
    [14]
    Rozsnyai B F. Shock Hugoniots based on the self-average atom(SCAA)model. Theory and experiments[J]. High Energ Dens Phys, 2012, 8(1): 88-100. doi: 10.1016/j.hedp.2011.11.012
    [15]
    Yuan J K, Sun Y S, Zheng S T. Average atom model in hot plasmas[J]. Chinese Journal of Atomic and Molecular Physics. 1995, 12(2): 118-126.
    [16]
    朱希睿, 孟续军, 田明锋, 等.等离子体电子压强的Hartree-Fock-Slater自洽场的计算[J].物理学报, 2005, 54(9): 4101-4107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200509026

    Zhu X R, Meng X J, Tian M F, et al. Hartree-Fock-Slater self-consistent field calculation of electron pressure for plasmas[J]. Acta Physics Sinica, 2005, 54(9): 4101-4107. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200509026
    [17]
    Shock Wave Database[DB]. (2003-07-13)http://teos.ficp.ac.ru/rusbank.
    [18]
    Porcherot Q, Faussurier G, Blancard C. Thermodynamic conditions of shock Hugoniot curves in hot dense matter[J]. High Energ Dens Phys, 2010, 6(1): 76-83. doi: 10.1016/j.hedp.2009.06.010
    [19]
    Zel'dovich Y B, Raizer Y P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena(Vol. Ⅱ)[M]. New York: Academic Press, 1967: 685-705.
    [20]
    徐锡申, 张万箱.实用物态方程理论导引[M].北京: 科学出版社, 1986: 138-537.

    Xu X S, Zhang W X. An Introduction to Practical Theory of Equation of State[M]. Beijing: Science Press, 1986: 138-537. (in Chinese)
    [21]
    段耀勇, 郭永辉, 邱爱慈.凝聚态物质状态方程的一个数值模型[J].核聚变与等离子体物理, 2011, 31(2): 97-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjbydlztwl201102001

    Duan Y Y, Guo Y H, Qiu A C. A numerical model for the equation of state for condensed matter[J]. Nuclear Fusion and Plasma Physics, 2011, 31(2): 97-104. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjbydlztwl201102001
    [22]
    Duan Y Y, Guo Y H, Qiu A C. Shock wave and particle velocities of typical metals on shock adiabats[J]. Plasma Sci Technol, 2013, 15(8): 727. doi: 10.1088/1009-0630/15/8/02
    [23]
    Bell A R. New equations of state for Medusa, RL-80-091[R]. Chilton: Rutherford and Appleton Labs, 1980.
    [24]
    谭华.实验冲击波物理导引[M].北京: 国防工业出版社, 2007: 52-61.

    Tan H. Introduction to Experimental Shock-Wave Physics[M]. Beijing: National Defence Industry Press, 2007: 52-61. (in Chinese)
    [25]
    汤文辉, 张若棋.物态方程理论及计算概论[M].第2版.北京: 高等教育出版社, 2008: 86-123.

    Tang W H, Zhang R Q. Introduction to Theory and Computation of Equations of State[M]. 2nd ed. Beijing: Higher Education Press, 2008: 86-123. (in Chinese)
    [26]
    Woan G. The Cambridge Handbook of Physics Formulas[M]. Beijing: Cambridge University Press & Beijing World Publishing Corporation, 2010: 124-125.
    [27]
    李维新.一维不定常流与冲击波[M].北京: 国防工业出版社, 2003: 34-55.

    Li W X. One-Dimensional Non-Steady Flow and Shock Waves[M]. Beijing: National Defence Industry Press, 2003: 34-55. (in Chinese)
    [28]
    Atzeni S, Meyer-ter-Vehn J. The Physics of Inertial Fusion[M]. Oxford: Clarendon Press, 2004: 343-345.
    [29]
    Johnson J D. Bound and estimate for the maximum compression of single shocks[J]. Phys Rev E, 1999, 59: 3727-3728. doi: 10.1103/PhysRevE.59.3727
    [30]
    Gschneidner K A Jr. Physical properties and interrelationships of metallic and semi-metallic elements[M]//Seitz F, Turnbull D. Solid State Physics(Vol. 16). New York & London: Academic Press, 1964: 275-426.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(6348) PDF downloads(260) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return