Volume 29 Issue 2
Jun 2015
Turn off MathJax
Article Contents
LÜ Ming-Da, LIU Xi, XIONG Zhi-Hua, WANG Fei. Influence of Metal Additives on the Reaction Rate of High-Pressure and High-Temperature Experiments:Add Platinum Powder into the Coesite-Corundum-Kyanite System[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 99-108. doi: 10.11858/gywlxb.2015.02.003
Citation: LÜ Ming-Da, LIU Xi, XIONG Zhi-Hua, WANG Fei. Influence of Metal Additives on the Reaction Rate of High-Pressure and High-Temperature Experiments:Add Platinum Powder into the Coesite-Corundum-Kyanite System[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 99-108. doi: 10.11858/gywlxb.2015.02.003

Influence of Metal Additives on the Reaction Rate of High-Pressure and High-Temperature Experiments:Add Platinum Powder into the Coesite-Corundum-Kyanite System

doi: 10.11858/gywlxb.2015.02.003
  • Received Date: 06 Oct 2014
  • Rev Recd Date: 25 Dec 2014
  • In the high-pressure and high-temperature experiments with the diamond anvil cell and large volume press, metal powder (such as Pt, Au, Fe) is usually added for the purposes of pressure measurement, laser heating and mineral growth rate reduction.It is widely acknowledged that these metal additives should not react with the system under investigation.However, no enough attention has been paid to the issue whether or not these metal additives affect the reaction rate.Under appropriatep-T conditions, corundum and coesite combine to form kyanite.With the addition of different amounts of Pt powder into the system, we investigated the effect of adding Pt powder on the kyanite formation reaction.We found that adding Pt powder promotes the synthesizing reaction, and the promoting effect increases with the amount of added Pt powder.These results can provide important constraints in interpreting relevant high-pressure and high-temperature experiments.

     

  • loading
  • [1]
    Akahama Y, Kawamura H. Diamond anvil Raman gauge in multimegabar pressure range[J]. High Press Res, 2007, 27(4): 473-482. doi: 10.1080/08957950701659544
    [2]
    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar[J/OL]. Nat Commun, 2012, 3: 1163. http://www.nature.com/ncomms/journal/v3/n10/pdf/ncomms2160.pdf.
    [3]
    Mao H K, Wu Y, Chen L C, et al. Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa-implications for composition of the core[J]. J Geophys Res, 1990, 95(B13): 21737-21742. doi: 10.1029/JB095iB13p21737
    [4]
    Boehler R, Vonbargen N, Chopelas A. Melting, thermal-expansion, and phase-transitions of iron at high-pressures[EB/J]. J Geophys Res, 1990, 95(B13): 21731-21736.
    [5]
    Ming L, Bassett W A. Laser-heating in diamond anvil press up to 2 000 ℃ sustained and 3 000 ℃ pulsed at pressures up to 260 kilobars[J]. Rev Sci Instrum, 1974, 45(9): 1115-1118. doi: 10.1063/1.1686822
    [6]
    Shen G Y, Rivers M L, Wang Y B, et al. Laser heated diamond cell system at the Advanced Photon Source for in situ X-ray measurements at high pressure and temperature[J]. Rev Sci Instrum, 2001, 72(2): 1273-1282. doi: 10.1063/1.1343867
    [7]
    Mezouar M. Synchrotron high-pressure high-temperature techniques[M]//High-Pressure Crystallography: From Fundamental Phenomena to Technological Applications. Netherlands: Springer, 2010: 23-33.
    [8]
    Wang Y. Large volume presses for high-pressure studies using synchrotron radiation[M]//High-Pressure Crystallography: From Fundamental Phenomena to Technological Applications. Netherlands: Springer, 2010: 81-96.
    [9]
    He Q, Liu X, Li B, et al. Expansivity and compressibility of strontium fluorapatite and barium fluorapatite determined by in situ X-ray diffraction at high-T/P conditions: Significance of the M-site cations[J]. Phys Chem Miner, 2013, 40(4): 349-360. doi: 10.1007/s00269-013-0576-6
    [10]
    Chang L, Chen Z, Liu X, et al. Expansivity and compressibility of wadeite-type K2Si4O9 determined by in situ high T/P experiments, and their implication[J]. Phys Chem Miner, 2013, 40(1): 29-40. doi: 10.1007/s00269-012-0543-7
    [11]
    Wang S, Liu X, Fei Y, et al. In situ high-temperature powder X-ray diffraction study on the spinel solid solutions(Mg1-xMnx)Cr2O4[J]. Phys Chem Miner, 2012, 39(3): 189-198. doi: 10.1007/s00269-011-0474-8
    [12]
    He Q, Liu X, Hu X, et al. Solid solutions between lead fluorapatite and lead fluorvanadate apatite: Compressibility determined by using a diamond-anvil cell coupled with synchrotron X-ray diffraction[J]. Phys Chem Miner, 2012, 39(3): 219-226. doi: 10.1007/s00269-011-0477-5
    [13]
    Shen G, Wang Y. High-pressure apparatus integrated with synchrotron radiation[J]. Rev Mineral Geochem, 2014, 78(1): 745-777. doi: 10.2138/rmg.2014.78.18
    [14]
    Funamori N, Jeanloz R. High-pressure transformation of Al2O3[J]. Science, 1997, 278(5340): 1109-1111. doi: 10.1126/science.278.5340.1109
    [15]
    Kurashina T, Hirose K, Ono S, et al. Phase transition in Al-bearing CaSiO3 perovskite: Implications for seismic discontinuities in the lower mantle[J]. Phys Earth Planet Inter, 2004, 145(1/4): 67-74.
    [16]
    Ono S, Hirose K, Murakami M, et al. Post-stishovite phase boundary in SiO2 determined by in situ X-ray observations[J]. Earth Planet Sci Lett, 2002, 197(3/4): 187-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ccd4afcf738d17d6027cabf11d7227f0
    [17]
    Tutti F. Formation of end-member NaAlSi3O8 hollandite-type structure(lingunite)in diamond anvil cell[J]. Phys Earth Planet Inter, 2007, 161(3/4): 143-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=375c25292602bd04cc2c1460cd7f6b6d
    [18]
    Tutti F, Dubrovinsky L S, Saxena S K, et al. Stability of KAlSi3O8 hollandite-type structure in the Earth's lower mantle conditions[J]. Geophys Res Lett, 2001, 28(14): 2735-2738. doi: 10.1029/2000GL012786
    [19]
    Ono S, Nakajima Y, Funakoshi K. In situ observation of the decomposition of kyanite at high pressures and high temperatures[J]. Am Miner, 2007, 92(10): 1624-1629. doi: 10.2138/am.2007.2492
    [20]
    Levenson Y, Emmanuel S. Pore-scale heterogeneous reaction rates on a dissolving limestone surface[J]. Geochim Cosmochim Acta, 2013, 119: 188-197. doi: 10.1016/j.gca.2013.05.024
    [21]
    Terada Y, Ohkubo K, Mohri T, et al. Thermal conductivity in Pt-based alloys[J]. J Alloys Compound, 1999, 285(1/2): 233-237. http://www.sciencedirect.com/science/article/pii/S0925838898010421
    [22]
    Manga M, Jeanloz R. Thermal conductivity of corundum and periclase and implications for the lower mantle[J]. J Geophys Res, 1997, 102(B2): 2999-3008. doi: 10.1029/96JB02696
    [23]
    Horai K, Susaki J. The effect of pressure on the thermal-conductivity of silicate rocks up to 12 kbar[J]. Phys Earth Planet Inter, 1989, 55(3/4): 292-305. http://www.sciencedirect.com/science/article/pii/0031920189900770
    [24]
    Correa A, Nolan S P, Cavallo L. N-heterocyclic carbene complexes of Au, Pd, and Pt as effective catalysts in organic synthesis[J]. Top Curr Chem, 2011, 302: 131-155. doi: 10.1007/128_2010_118
    [25]
    Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl Catalys B-Environm, 2005, 56(1/2): 9-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=089f3d5590acf0c14f937063006e430e
    [26]
    Miyake M, Miyabayashi K. Development of facile preparation methods for precisely structure-controlled Pt nanocrystals and their application as olefin hydrogenation model catalysts[J]. J Japan Petrol Instit, 2013, 56(4): 214-220. doi: 10.1627/jpi.56.214
    [27]
    Liu X, Ohfuji H, Nishiyama N, et al. High-P behavior of anorthite composition and some phase relations of the CaO-Al2O3-SiO2 system to the lower mantle of the Earth, and their geophysical implications[J]. J Geophys Res, 2012, 117: B09205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=12f3d48466f8ed301a032427e9f0a3fc
    [28]
    Liu X, Shieh S R, Fleet M E, et al. Compressibility of a natural kyanite to 17.5 GPa[J]. Prog Nat Sci, 2009, 19(10): 1281-1286. doi: 10.1016/j.pnsc.2009.04.001
    [29]
    Liu X, Nishiyama N, Sanehira T, et al. Decomposition of kyanite and solubility of Al2O3 in stishovite at high pressure and high temperature conditions[J]. Phys Chem Miner, 2006, 33(10): 711-721. doi: 10.1007/s00269-006-0122-x
    [30]
    Mikowski A, Soares P, Wypych F, et al. Fracture toughness, hardness, and elastic modulus of kyanite investigated by a depth-sensing indentation technique[J]. Am Miner, 2008, 93(5/6): 844-852. http://www.degruyter.com/view/j/ammin.2008.93.issue-5-6/am.2008.2694/am.2008.2694.xml?format=INT
    [31]
    Bucher K, de Capitani C, Grapes R. The development of a margarite-corundum blackwall by metasomatic alteration of a slice of mica schist in ultramific rock, Kvesjoen, Norwegian Caledonides[J]. Canad Miner, 2005, 43(1): 129-156. doi: 10.2113/gscanmin.43.1.129
    [32]
    Cernok A, Ballaran T B, Caracas R, et al. Pressure-induced phase transitions in coesite[J]. Am Miner, 2014, 99(4): 755-763. doi: 10.2138/am.2014.4585
    [33]
    Perrillat J P, Daniel I, Lardeaux J M, et al. Kinetics of the coesite-quartz transition: Application to the exhumation of ultrahigh-pressure rocks[J]. J Petrol, 2003, 44(4): 773-788. doi: 10.1093/petrology/44.4.773
    [34]
    Harlov D E, Newton R C. Reversal of the metastable kyanite plus corundum plus quartz and andalusite plus corundum plus quartz equilibria and the enthalpy of formation of kyanite and andalusite[J]. Am Miner, 1993, 78(5/6): 594-600. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9308165035&site=ehost-live
    [35]
    Laidler K J. The development of the Arrhenius equation[J]. J Chem Edu, 1984, 61(6): 494-498. doi: 10.1021/ed061p494
    [36]
    何强, 唐俊杰, 王霏, 等.一种适用于极端高温条件的六面顶压机实验组装[J].高压物理学报, 2014, 28(2): 145-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201402003

    He Q, Tang J J, Wang F, et al. High temperature stable assembly designed for cubic press[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 145-151. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201402003
    [37]
    Hirao N, Ohtani E, Kondo T, et al. Hollandite II phase in KAlSi3O8 as a potential host mineral of potassium in the Earth's lower mantle[J]. Phys Earth Planet Inter, 2008, 166(1/2): 97-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=57b093412230c8fcd34a8da6b5d70a21
    [38]
    Nishiyama N, Rapp R P, Irifune T, et al. Stability and p-V-T equation of state of KAlSi3O8-hollandite determined by in situ X-ray observations and implications for dynamics of subducted continental crust material[J]. Phys Chem Miner, 2005, 32(8/9): 627-637. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=70d6f49d1be2acac79bf9ba8bad5ceb5
    [39]
    Takafuji N, Yagi T, Miyajima N, et al. Study on Al2O3 content and phase stability of aluminous-CaSiO3 perovskite at high pressure and temperature[J]. Phys Chem Miner, 2002, 29(8): 532-537. doi: 10.1007/s00269-002-0271-5
    [40]
    Gréaux S, Nishiyama N, Kono Y, et al. Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth's mantle transition zone[J]. Phys Earth Planet Inter, 2011, 185(3/4): 89-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=354d64e2180a67eb5cc1c5c10caefbf2
    [41]
    Sueda Y, Irifune T, Yamada A, et al. The phase boundary between CaSiO3 perovskite and Ca2SiO4+CaSi2O5 determined by in situ X-ray observations[J]. Geophys Res Lett, 2006, 33(10): L10307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6000ffcc8d53a2078598b232aa5ba284
    [42]
    Irifune T, Nishiyama N, Kuroda K, et al. The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction[J]. Science, 1998, 279(5357): 1698-1700. doi: 10.1126/science.279.5357.1698
    [43]
    Liu L. High-pressure phase transformations of albite, jadeite and nepheline[J]. Earth Planet Sci Lett, 1978, 37(3): 438-444. doi: 10.1016/0012-821X(78)90059-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(6734) PDF downloads(260) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return