Volume 29 Issue 1
Apr 2015
Turn off MathJax
Article Contents
ZHANG Xu-Dong, FAN Bao-Chun, GUI Ming-Yue. Three-Dimensional Numerical Investigation on Structure and Radial Variation of Rotating Detonation Flow Field[J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 29-34. doi: 10.11858/gywlxb.2015.01.005
Citation: ZHANG Xu-Dong, FAN Bao-Chun, GUI Ming-Yue. Three-Dimensional Numerical Investigation on Structure and Radial Variation of Rotating Detonation Flow Field[J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 29-34. doi: 10.11858/gywlxb.2015.01.005

Three-Dimensional Numerical Investigation on Structure and Radial Variation of Rotating Detonation Flow Field

doi: 10.11858/gywlxb.2015.01.005
  • Received Date: 05 Aug 2013
  • Based on three-dimensional Euler equation and elementary reaction model of hydrogen/oxygen system which includes 8 species and 48 elementary reactions, the rotating detonation in the annular combustor was simulated numerically.The basic three-dimensional structure of the rotating detonation consists of detonation wavelet, oblique shock wave and slip line.Due to the special geometric configuration of rotating detonation combustion, the detonation strength near the inner wall is weaker than that near the outer wall, and the rotating detonation can propagate self-sustainingly finally.

     

  • loading
  • [1]
    Pan Z H, Fan B C, Zhang X D, et al. Wavelet pattern and self-sustained mechanism of gaseous detonation rotating in a coaxial cylinder[J]. Combust Flame, 2011, 158(11): 2220-2228. doi: 10.1016/j.combustflame.2011.03.016
    [2]
    Nicholls J A, Dabora E K, Gealler R L. Studies in connection with stabilized gaseous detonations waves[C]//Seventh Symposium(International)on Combustion. London: Butterworths Scientific Publications, 1959: 766-772.
    [3]
    Voitsekhovskii B V. Stationary detonation[J]. Doklady Akademii Nauk SSSR, 1959, 129(6): 1254-1256.
    [4]
    Bykovskii F A, Vedernikov E F. Continuous detonation combustion of an annular gas-mixture layer[J]. Combustion, Explosion, and Shock Waves, 1996, 32(5): 489-491. doi: 10.1007/BF01998570
    [5]
    Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonation[J]. J Propul Power, 2006, 22(6): 1204-1216. doi: 10.2514/1.17656
    [6]
    Bykovskii F A, Zhdan S A, Vedernikov E F. Realization and modeling of continuous spin detonation of a hydrogen-oxygen mixture in flow-type combustors[J]. Combustion, Explosion, and Shock Waves, 2009, 45(6): 716-728. doi: 10.1007/s10573-009-0089-2
    [7]
    Daniau E, Falempin F, Zhdan S. Pulsed and rotating detonation propulsion systems: First step toward operational engines, AIAA 2005-3233[R]. Reston, VA: American Institute of Aeronautics and Astronautics, 2005.
    [8]
    Wolanski P, Kindracki J, Fujiwara T. An experimental study of small rotating detonation engine[C]//Roy G, Frolov S, Sinibaldi J. Pulsed and Continuous Detonations. Moscow: Torus Press, 2006: 332-338.
    [9]
    Kindracki J, Wolanski P, Gut Z. Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures[J]. Shock Waves, 2011, 21(2): 75-84. doi: 10.1007/s00193-011-0298-y
    [10]
    Zhdan S A, Bykovskii F A, Vedernikov E F. Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture[J]. Combustion, Explosion and Shock Waves, 2007, 43(4): 449-459. doi: 10.1007/s10573-007-0061-y
    [11]
    Davidenko D M, Gökalp I, Kudryavtsev A N. Numerical study of continuous detonation wave rocket engine, AIAA 2008-2680[R]. Reston, VA: American Institute of Aeronautics and Astronautics, 2008.
    [12]
    Hishida M, Fujiwara T, Wolanski P. Fundamentals of rotating detonations[J]. Shock Waves, 2009, 19(1): 1-10. doi: 10.1007/s00193-008-0178-2
    [13]
    Yi T H, Turangan C, Lou J. A three-dimensional numerical study of rotational detonation in an annular chamber, AIAA 2009-634[R]. Reston, VA: American Institute of Aeronautics and Astronautics, 2009.
    [14]
    Yi T H, Lou J, Turangan C. Effect of nozzle shapes on the performance of continuously rotating detonation engine, AIAA 2010-152[R]. Reston, VA: American Institute of Aeronautics and Astronautics, 2010.
    [15]
    Schwer D, Kailasanath K. Numerical investigation of the physics of rotating-detonation-engines[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2195-2202. doi: 10.1016/j.proci.2010.07.050
    [16]
    Uemura Y, Hayashi A K, Asahara M, et al. Transverse wave generation mechanism in rotating detonation[J]. Proceedings of the Combustion Institute, 2013, 34(2): 1981-1989. doi: 10.1016/j.proci.2012.06.184
    [17]
    Zhang X D, Fan B C, Gui M Y, et al. Numerical study on three-dimensional flow field of continuously rotating detonation in a toroidal chamber[J]. Acta Mech Sin, 2012, 28(1): 66-72. doi: 10.1007/s10409-012-0005-y
    [18]
    Zhong X L. Additive semi-implicit Runge-Kutta methods for computing high-speed nonequilibrium reactive flows[J]. J Comput Phys, 1996, 128(1): 19-31. doi: 10.1006/jcph.1996.0193
    [19]
    Leveque R J. Wave propagation algorithms for multidimensional hyperbolic systems[J]. J Comput Phys, 1997, 131(2): 327-353. http://dl.acm.org/citation.cfm?id=254440
    [20]
    Radhakrishnan K, Hindmarsh A C. Description and use of LSODE, the livermore solver for ordinary differential equations, UCRL-ID-113855[R]. Livermore, CA: Lawrence Livermore National Laboratory, 1993.
    [21]
    Burks T L, Oran E S. A computational study of the chemical kinetics of hydrogen combustion, NRL Memorandum Report 4446[R]. Washington, DC: Naval Research Laboratory, 1981.
    [22]
    Gamezo V N, Desbordes D, Oran E S. Two-dimensional reactive flow dynamics in cellular detonation waves[J]. Shock Waves, 1999, 9(1): 11-17. doi: 10.1007/s001930050134
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(6436) PDF downloads(260) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return