Volume 28 Issue 6
Mar 2015
Turn off MathJax
Article Contents
PANG Bao-Jun, ZHANG Kai, LIN Min, LIU Yuan. Characteristic Analysis of Acoustic Emission Signals Caused by Debris Cloud Impact[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 664-670. doi: 10.11858/gywlxb.2014.06.004
Citation: PANG Bao-Jun, ZHANG Kai, LIN Min, LIU Yuan. Characteristic Analysis of Acoustic Emission Signals Caused by Debris Cloud Impact[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 664-670. doi: 10.11858/gywlxb.2014.06.004

Characteristic Analysis of Acoustic Emission Signals Caused by Debris Cloud Impact

doi: 10.11858/gywlxb.2014.06.004
  • Received Date: 26 Dec 2012
  • Rev Recd Date: 08 Mar 2013
  • In order to understand the characteristics of acoustic emission signals caused by hypervelocity space debris impacting spacecraft with shields, a two-stage light gas gun was used to launch sphere projectiles to impact an aluminum-alloy Whipple shield, the induced acoustic emission signals were acquired, and analyzed by wavelet packet technology and energy entropy theory.The experimental results indicate that, the initial velocity of projectile, bumper thickness and projectile diameter are important factors to decide the form of debris cloud and characteristics of acoustic emission signals.The wavelet packet energy entropy could be used to describe the frequency complexity of debris cloud impact signals.When the initial velocity of projectile increases in the broken section (3-7 km/s), along with which the projectile breaks more completely and the energy entropy of acoustic emission signals increases.Under the experimental conditions, the bumper thickness has greater influence on energy entropy values than the projectile diameter.The wavelet packet energy entropy is helpful to estimate the initial velocity of projectile and the maximum impact damage region, combined with the predicted curve from the Christiansen ballistic limit equation, the damage pattern recognition of the bulkhead could be assessed.

     

  • loading
  • [1]
    Miyachi T, Hasebe N, Ito H, et al. Real-time detector for hypervelocity microparticles using piezoelectric material[J]. Adv Space Res, 2004, 34(5): 935-938. doi: 10.1016/j.asr.2003.11.019
    [2]
    Schäfer F, Janovsky R. Impact sensor network for detection of hypervelocity impacts on spacecraft[J]. Acta Astronaut, 2007, 61(10): 901-911. doi: 10.1016/j.actaastro.2007.02.002
    [3]
    Prosser W H, Gorman M R, Humes D H. Acoustic emission signals in thin plates produced by impact damage[J]. J Acoust Emiss, 1999, 17(1/2): 29-36.
    [4]
    唐颀, 庞宝君, 韩增尧, 等.单层板超高速撞击声发射波的频谱特征分析[J].宇航学报, 2007, 28(4): 1059-1064.

    Tang Q, Pang B J, Han Z Y, et al. Analysis of frequency spectrum character of acoustic emission wave from hypervelocity impact on single-sheet plate[J]. Journal of Astronautics, 2007, 28(4): 1059-1064. (in Chinese)
    [5]
    刘武刚, 庞宝君, 韩增尧, 等.基于声发射的单层铝板高速撞击损伤类型识别[J].宇航学报, 2011, 32(3): 671-675.

    Liu W G, Pang B J, Han Z Y, et al. Damage identification of single aluminum plate produced by hypervelocity impact based acoustic emission[J]. Journal of Astronautics, 2011, 32(3): 671-675. (in Chinese)
    [6]
    管永红, 胡八一, 黄超.基于小波包的爆炸容器振动分析[J].爆炸与冲击, 2010, 30(5): 551-555.

    Guan Y H, Hu B Y, Huang C. Vibration analysis of an explosion vessel based on wavelet packet transform[J]. Explosion and Shock Waves, 2010, 30(5): 551-555. (in Chinese)
    [7]
    凌同华, 廖艳程, 张胜.冲击荷载下岩石声发射信号能量特征的小波包分析[J].振动与冲击, 2010, 29(10): 127-130, 255.

    Ling T H, Liao Y C, Zhang S. Application of wavelet packet method in frequency band energy distribution of rock acoustic emission signals under impact loading[J]. Journal of Vibration and Shock, 2010, 29(10): 127-130, 255. (in Chinese)
    [8]
    管公顺, 庞宝君, 哈跃, 等.铝合金Whipple防护结构高速撞击实验研究[J].爆炸与冲击, 2005, 25(5): 461-466.

    Guan G G, Pang B J, Ha Y, et al. Experimental investigation of high-velocity impact on aluminum alloy Whipple shield[J]. Explosion and Shock Waves, 2005, 25(5): 461-466. (in Chinese)
    [9]
    Christiansen E L. Design and performance equations for advanced meteoroid and debris shields[J]. Int J Impact Eng, 1993, 14(1): 145-156.
    [10]
    唐颀.超高速撞击板波特性与声发射空间碎片在轨感知技术[D].哈尔滨: 哈尔滨工业大学, 2008: 56-76.

    Tang Q. Characteristics of plate waves induced by hypervelocity impact and onboard monitoring technique for detection of impact on spacecraft by space debris[D]. Harbin: Harbin Institute of Technology, 2008: 56-76. (in Chinese)
    [11]
    Rosso O A, Blanco S, Yordanova J, et al. Wavelet entropy: A new tool for analysis of short duration brain electrical signals[J]. J Neurosci Meth, 2001, 105(1): 65-75. doi: 10.1016/S0165-0270(00)00356-3
    [12]
    印欣运, 何永勇, 彭志科, 等.小波熵及其在状态趋势分析中的应用[J].振动工程学报, 2004, 17(2): 49-53.

    Yin X Y, He Y Y, Peng Z K, et al. Study on wavelet entropy and its applications in trend analysis[J]. Journal of Vibration Engineering, 2004, 17(2): 49-53. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(6142) PDF downloads(349) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return