Volume 28 Issue 5
Mar 2015
Turn off MathJax
Article Contents
ZHOU Nan, WANG Jin-Xiang, YANG Rui, XIE Jun. Anti-Penetration Performance of Double Hardness Target Impacted by a Spherical Projectile[J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 564-570. doi: 10.11858/gywlxb.2014.05.009
Citation: ZHOU Nan, WANG Jin-Xiang, YANG Rui, XIE Jun. Anti-Penetration Performance of Double Hardness Target Impacted by a Spherical Projectile[J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 564-570. doi: 10.11858/gywlxb.2014.05.009

Anti-Penetration Performance of Double Hardness Target Impacted by a Spherical Projectile

doi: 10.11858/gywlxb.2014.05.009
  • Received Date: 16 Nov 2012
  • Rev Recd Date: 17 Apr 2013
  • Ballistic experiments and numerical simulation were adopted to analyze the anti-penetration performance of double hardness explosively welded steel/aluminum plates penetrated vertically by a spherical projectile.A 14.5 mm diameter smoothbore gun was used to launch the spherical steel projectile with a diameter of 6 mm, and the finite element code LS-DYNA3D with the coupling algorithm of finite element and smoothed particle hydrodynamics (FE-SPH) was applied to simulate the penetration process.The effects of thickness and strength of the explosively welded plates on the anti-penetration performance and damage mechanism were analyzed.The results show that the damage mechanism of the steel front layer is shearing and plugging and that of the aluminum rear layer is prolonging deformation.For a two-layer steel/aluminum plate, the anti-penetration performance is the worst when the thickness ratio of steel and aluminum plate is about 2/3.The numerical simulation results are well agreed with the experimental ones, so the FE-SPH method can predict the anti-penetration performance of two-layer explosively welded plates well.

     

  • loading
  • [1]
    Skaggs S R. A brief history of ceramic armor development[J]. Ceram Eng Sci Proc, 2003, 24(3): 337-349.
    [2]
    Elek P, Jaramaz S, Mickovic D. Modeling of perforation of plates and multi-layered metallic targets[J]. Int J Solids Struct, 2005, 42(3/4): 1209-1224. http://www.sciencedirect.com/science/article/pii/S0020768304003762
    [3]
    Solberg J K, Leinum J R, Embury J D, et al. Localised shear banding in Weldox steel plates impacted by projectiles[J]. Mech Mater, 2007, 39(9): 865-880. doi: 10.1016/j.mechmat.2007.03.002
    [4]
    Dey S, Børvik T, Hopperstad O S, et al. On the influence of constitutive relation in projectile impact of steel plates[J]. Int J Impact Eng, 2007, 34(3): 464-486. doi: 10.1016/j.ijimpeng.2005.10.003
    [5]
    Dey S, Børvik T, Teng X, et al. On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation[J]. Int J Solids Struct, 2007, 44(1): 6701-6723. http://www.sciencedirect.com/science/article/pii/S0020768307001242
    [6]
    Joshi V S, Carney T C. Modeling of bullet penetration in explosively welded composite armor plate[J]. AIP Conf Proc, 2006, 845(1): 1387-1390.
    [7]
    尹放林, 王明洋, 钱七虎.弹体垂直侵彻深度工程计算模型[J].爆炸与冲击, 1997, 17(4): 333-338. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ704.006.htm

    Yin F L, Wang M Y, Qian Q H. An engineering computing model for penetration depth of projectile normal into target[J]. Explosion and Shock Waves, 1997, 17(4): 333-338. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-BZCJ704.006.htm
    [8]
    王政, 倪玉山, 曹菊珍, 等.基于速度势侵彻模型的应用研究[J].高压物理学报, 2005, 19(1): 10-16.

    Wang Z, Ni Y S, Cao J Z, et al. Application of the velocity potential model to penetration study[J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 10-16. (in Chinese)
    [9]
    蒋志刚, 曾首义, 周建平.中等厚度金属靶板的三阶段贯穿模型[J].兵工学报, 2007, 28(9): 1046-1051.

    Jiang Z G, Zeng S Y, Zhou J P. A three-stage model for the perforation of moderately thick metallic plates[J]. Acta Armamentarii, 2007, 28(9): 1046-1051. (in Chinese)
    [10]
    Zhou N, Wang J X, Yang R, et al. Damage mechanism and anti-penetration performance of multi-layered explosively welded plates impacted by spherical projectile[J]. Theor Appl Fract Mech, 2012, 60(1): 23-30.
    [11]
    周楠, 王金相, 谢君, 等.球形弹丸作用下钢/铝爆炸复合靶的抗侵彻性能计算与分析[J].高压物理学报, 2013, 27(6): 839-846. http://qikan.cqvip.com/Qikan/Article/Detail?id=48594281

    Zhou N, Wang J X, Xie J, et al. Calculation and analysis for the anti-penetration performance of explosively welded steel/aluminum plates target by the penetration of spherical projectile[J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 839-846. (in Chinese) http://qikan.cqvip.com/Qikan/Article/Detail?id=48594281
    [12]
    李裕春, 时党勇, 赵远. ANSYS 11.0/LS-DYNA基础理论与工程实践[M].北京: 中国水利水电出版社, 2006: 437.

    Li Y C, Shi D Y, Zhao Y. ANSYS 11.0/LS-DYNA Basic Theory and Engineering Practice[M]. Beijing: China Water Power Press, 2006: 437. (in Chinese)
    [13]
    Kurtaran H, Buyuk M, Eskandarian A. Design automation of a laminated armor for best impact performance using approximate optimization method[J]. Int J Impact Eng, 2003, 29(1): 397-406.
    [14]
    Gupta N K, Iqbal M A, Sekhon G S. Effect of projectile nose shape, impact velocity and target thickness on the deformation behavior of layered plates[J]. Int J Impact Eng, 2008, 35(1): 37-60. doi: 10.1016/j.ijimpeng.2006.11.004
    [15]
    Chen X W, Li Q M. Shear plugging and perforation of ductile circular plates struck by a blunt projectile[J]. Int J Impact Eng, 2003, 28(5): 513-536. doi: 10.1016/S0734-743X(02)00077-5
    [16]
    张建春, 张华鹏.军用盔甲[M].北京: 长城出版社, 2003.

    Zhang J C, Zhang H P. Body Armor[M]. Beijing: Great Wall Pubishing House, 2003. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(5750) PDF downloads(278) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return