Volume 28 Issue 4
Mar 2015
Turn off MathJax
Article Contents
LI Ren-Jie, LIAO Xiao-Jun, HU Xiao-Song, WU Ji-Hong. Effects of High Hydrostatic Pressure on Proteins[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 498-506. doi: 10.11858/gywlxb.2014.04.017
Citation: LI Ren-Jie, LIAO Xiao-Jun, HU Xiao-Song, WU Ji-Hong. Effects of High Hydrostatic Pressure on Proteins[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 498-506. doi: 10.11858/gywlxb.2014.04.017

Effects of High Hydrostatic Pressure on Proteins

doi: 10.11858/gywlxb.2014.04.017
  • Received Date: 16 Jun 2012
  • Rev Recd Date: 24 Aug 2012
  • This review introduces the effects of high hydrostatic pressure on the molecular volume, non-covalent bond and conformation of protein.The molecular volume is decreased, and the hydrogen bond, electrovalent bond, and hydrophobic interaction are influenced by compression.The secondary, tertiary and quaternary structures of protein are influenced by pressure below 800 MPa.Tertiary and quaternary structures are more pressure-sensitive than secondary structure.Pressure below 8 GPa does not influence the primary structure of proteins.

     

  • loading
  • [1]
    周林燕, 廖红梅, 张文佳, 等.食品高压技术研究进展和应用现状[J].中国食品学报, 2009, 9(4): 165-169. http://www.cnki.com.cn/Article/CJFDTotal-ZGSP200905029.htm

    Zhou L Y, Liao H M, Zhang W J, et al. Review of high pressure technologies for food processing[J]. Journal of Chinese Institute of Food Science and Technology, 2009, 9(4): 165-169. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-ZGSP200905029.htm
    [2]
    廖小军.超高压技术在果蔬加工中大有可为[J].农业工程技术, 2009(9): 36-38. http://www.cnki.com.cn/Article/CJFDTotal-NYGN200909015.htm

    Liao X J. HHP has bright prospect in fruit and vegetable processing[J]. Agriculture Engineering Technology, 2009(9): 36-38. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-NYGN200909015.htm
    [3]
    上官丽娟, 马永昆, 崔凤杰, 等.高压处理对辣根过氧化物酶活性及构象的影响[J].高压物理学报, 2011, 25(5): 475-480. http://www.cqvip.com/QK/96553X/20115/39721767.html

    Shangguan L J, Ma Y K, Cui F J, et al. Effects of high pressure processing on the activity and the conformation of horseradish peroxidase[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 475-480. (in Chinese) http://www.cqvip.com/QK/96553X/20115/39721767.html
    [4]
    马汉军, 周光宏, 余小领, 等.高压与加热协同处理对牛肌肉中蛋白酶活性的影响[J].高压物理学报, 2011, 25(1): 89-96. http://www.cqvip.com/QK/96553X/201101/37267496.html

    Ma H J, Zhou G H, Yu X L, et al. Effects of combined high pressure and thermal treatment on protease activities in beef muscle[J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 89-96. (in Chinese) http://www.cqvip.com/QK/96553X/201101/37267496.html
    [5]
    陈小强, 章银军, 张士康, 等.超高压处理对毛栓菌多酚氧化酶的影响[J].高压物理学报, 2012, 26(2): 235-240. http://www.cqvip.com/QK/96553X/201202/41757138.html

    Chen X Q, Zhang Y J, Zhang S K, et al. Effect of high pressure processing on polyphenol oxidase from trametes trogii[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 235-240. (in Chinese) http://www.cqvip.com/QK/96553X/201202/41757138.html
    [6]
    Mozhaev V V, Heremans K, Frank J, et al. High pressure effects on protein structure and function[J]. Proteins Struct Funct Bioinf, 1996, 24(1): 81-91. doi: 10.1002/(SICI)1097-0134(199601)24:1<81::AID-PROT6>3.0.CO;2-R
    [7]
    Silva J L, Foguel D, Royer C A. Pressure provides new insights into protein folding, dynamics and structure[J]. Trends Biochem Sci, 2001, 26(10): 612-618. doi: 10.1016/S0968-0004(01)01949-1
    [8]
    Boonyaratanakornkit B B, Park C B, Clark D S. Pressure effects on intra-and intermolecular interactions within proteins[J]. Biochim Biophys Acta, 2002, 1595(1/2): 235-249. http://europepmc.org/abstract/MED/11983399
    [9]
    Eisenmenger M J, Reyes-De-Corcuera J I. High pressure enhancement of enzymes: A review[J]. Enzyme Microb Technol, 2009, 45(5): 331-347. doi: 10.1016/j.enzmictec.2009.08.001
    [10]
    Gross M, Jaenicke R. Proteins under pressure: The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes[J]. Eur J Biochem, 1994, 221(2): 617-630. doi: 10.1111/j.1432-1033.1994.tb18774.x
    [11]
    卜平宇, 夏泉.普通化学[M].北京: 科学出版社, 2009: 253.

    Bu P Y, Xia Q. General Chemistry[M]. Beijing: Science Press, 2009: 253. (in Chinese)
    [12]
    Bridgman P W. The Physics of High Pressure[M]. London: George Bell & Sons Ltd, 1931: 450.
    [13]
    Gekko K, Hasegawa Y. Compressibility-structure relationship of globular proteins[J]. Biochemistry, 1986, 25(21): 6563-6571. doi: 10.1021/bi00369a034
    [14]
    Prehoda K E, Mooberry E S, Markley J L. Pressure denaturation of proteins: Evaluation of compressibility effects[J]. Biochemistry, 1998, 37(17): 5785-5790. doi: 10.1021/bi980384u
    [15]
    Vidugiris G J A, Royer C A. Determination of the volume changes for pressure-induced transitions of apomyoglobin between the native, molten globule, and unfolded states[J]. Biophys J, 1998, 75(1): 463-470. doi: 10.1016/S0006-3495(98)77534-4
    [16]
    Seemann H, Winter R, Royer C A. Volume, expansivity and isothermal compressibility changes associated with temperature and pressure unfolding of Staphylococcal nuclease[J]. J Mol Biol, 2001, 307(4): 1091-1102. doi: 10.1006/jmbi.2001.4517
    [17]
    Roche J, Caro J A, Norberto D R, et al. Cavities determine the pressure unfolding of proteins[J]. Proc Natl Acad Sci, 2012, 109(18): 6945-6950. doi: 10.1073/pnas.1200915109
    [18]
    Visser A, Li T M, Drickamer H G, et al. Effect of pressure upon the fluorescence of various flavodoxins[J]. Biochemistry, 1977, 16(22): 4879-4882. doi: 10.1021/bi00641a020
    [19]
    Zipp A, Kauzmann W. Pressure denaturation of metmyoglobin[J]. Biochemistry, 1973, 12(21): 4217-4228. doi: 10.1021/bi00745a028
    [20]
    Kornblatt J A, Hui Bon Hoa G, Heremans K. Pressure-induced effects on cytochrome oxidase: The aerobic steady state[J]. Biochemistry, 1988, 27(14): 5122-5128. doi: 10.1021/bi00414a026
    [21]
    Fuentes E J, Wand A J. Local stability and dynamics of apocytochrome b562 examined by the dependence of hydrogen exchange on hydrostatic pressure[J]. Biochemistry, 1998, 37(28): 9877-9883. doi: 10.1021/bi980894o
    [22]
    Collins M D, Quillin M L, Hummer G, et al. Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography[J]. J Mol Biol, 2007, 367(3): 752-763. doi: 10.1016/j.jmb.2006.12.021
    [23]
    Abe F, Kato C, Horikoshi K. Pressure-regulated metabolism in microorganisms[J]. Trends Microbiol, 1999, 7(11): 447-453. doi: 10.1016/S0966-842X(99)01608-X
    [24]
    Heremans L, Heremans K. Raman spectroscopic study of the changes in secondary structure of chymotrypsin: Effect of pH and pressure on the salt bridge[J]. Biochim Biophys Acta, 1989, 999(2): 192-197. doi: 10.1016/0167-4838(89)90217-3
    [25]
    Hei D J, Clark D S. Pressure stabilization of proteins from extreme thermophiles[J]. Appl Environ Microbiol, 1994, 60(3): 932-939. doi: 10.1128/AEM.60.3.932-939.1994
    [26]
    Day R, García A E. Water penetration in the low and high pressure native states of ubiquitin[J]. Proteins Struct Funct Bioinf, 2008, 70(4): 1175-1184. doi: 10.1002/prot.21562
    [27]
    Dadarlat V M, Post C B. Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions[J]. Biophys J, 2006, 91(12): 4544-4554. doi: 10.1529/biophysj.106.087726
    [28]
    王镜岩.生物化学[M].北京: 高等教育出版社, 2002: 626.

    Wang J Y. Biochemistry[M]. Beijing: Higher Education Press, 2002: 626. (in Chinese)
    [29]
    Hayert M, Perrier-Cornet J M, Gervais P. A simple method for measuring the pH of acid solutions under high pressure[J]. J Phys Chem A, 1999, 103(12): 1785-1789. doi: 10.1021/jp983204z
    [30]
    Peng X, Jonas J, Silva J L. Molten-globule conformation of Arc repressor monomers determined by high-pressure 1H NMR spectroscopy[J]. Proc Natl Acad Sci, 1993, 90(5): 1776-1780. doi: 10.1073/pnas.90.5.1776
    [31]
    Imai T, Sugita Y. Dynamic correlation between pressure-induced protein structural transition and water penetration[J]. J Phys Chem B, 2010, 114(6): 2281-2286. doi: 10.1021/jp909701j
    [32]
    Collins M D, Hummer G, Quillin M L, et al. Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation[J]. Proc Natl Acad Sci, 2005, 102(46): 16668-16671. doi: 10.1073/pnas.0508224102
    [33]
    Hédoux A, Guinet Y, Paccou L. Analysis of the mechanism of lysozyme pressure denaturation from Raman spectroscopy investigations, and comparison with thermal denaturation[J]. J Phys Chem B, 2011, 115(20): 6740-6748. doi: 10.1021/jp2014836
    [34]
    Grigera J R, McCarthy A N. The behavior of the hydrophobic effect under pressure and protein denaturation[J]. Biophys J, 2010, 98(8): 1626-1631. doi: 10.1016/j.bpj.2009.12.4298
    [35]
    Ando N, Barstow B, Baase W A, et al. Structural and thermodynamic characterization of T4 lysozyme mutants and the contribution of internal cavities to pressure denaturation[J]. Biochemistry, 2008, 47(42): 11097-11109. doi: 10.1021/bi801287m
    [36]
    Akasaka K, Li H, Yamada H, et al. Pressure response of protein backbone structure: Pressure-induced amide 15N chemical shifts in BPTI[J]. Protein Sci, 1999, 8(10): 1946-1953. doi: 10.1110/ps.8.10.1946
    [37]
    Girard E, Marchal S, Perez J, et al. Structure-function perturbation and dissociation of tetrameric urate oxidase by high hydrostatic pressure[J]. Biophys J, 2010, 98(10): 2365-2373. doi: 10.1016/j.bpj.2010.01.058
    [38]
    Le Tilly V, Sire O, Alpert B, et al. An infrared study of 2H-bond variation in myoglobin revealed by high pressure[J]. Eur J Biochem, 1992, 205(3): 1061-1065. doi: 10.1111/j.1432-1033.1992.tb16874.x
    [39]
    Kangur L, Timpmann K, Freiberg A. Stability of integral membrane proteins under high hydrostatic pressure: The LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria[J]. J Phys Chem B, 2008, 112(26): 7948-7955. doi: 10.1021/jp801943w
    [40]
    Hummer G, Garde S, García A E, et al. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins[J]. Proc Natl Acad Sci, 1998, 95(4): 1552-1555. doi: 10.1073/pnas.95.4.1552
    [41]
    Hemley R J. Effects of high pressure on molecules[J]. Annu Rev Phys Chem, 2000, 51: 763-800. doi: 10.1146/annurev.physchem.51.1.763
    [42]
    Chen W, Heymann G, Kursula P, et al. Effects of gigapascal level pressure on protein structure and function[J]. J Phys Chem B, 2012, 116(3): 1100-1110. doi: 10.1021/jp207864c
    [43]
    Subirade M, Loupil F, Allain A, et al. Effect of dynamic high pressure on the secondary structure of β-lactoglobulin and on its conformational properties as determined by Fourier transform infrared spectroscopy[J]. Int Dairy J, 1998, 8(2): 135-140. doi: 10.1016/S0958-6946(98)00034-X
    [44]
    Ngarize S, Herman H, Adams A, et al. Comparison of changes in the secondary structure of unheated, heated, and high-pressure-treated β-lactoglobulin and ovalbumin proteins using fourier transform raman spectroscopy and self-deconvolution[J]. J Agric Food Chem, 2004, 52(21): 6470-6477. doi: 10.1021/jf030649y
    [45]
    Rouget J B, Schroer M A, Jeworrek C, et al. Unique features of the folding landscape of a repeat protein revealed by pressure perturbation[J]. Biophys J, 2010, 98(11): 2712-2721. doi: 10.1016/j.bpj.2010.02.044
    [46]
    Takeda N, Kato M, Taniguchi Y. Pressure-and thermally-induced reversible changes in the secondary structure of ribonuclease: A studied by FT-IR spectroscopy[J]. Biochemistry, 1995, 34(17): 5980-5987. doi: 10.1021/bi00017a027
    [47]
    阎隆飞, 孙之荣.蛋白质分子结构[M].北京: 清华大学出版社, 1999: 334.

    Yan L F, Sun Z R. Structure of Proteins[M]. Beijing: Tsinghua University Press, 1999: 334. (in Chinese)
    [48]
    Knorr D, Heinz V, Buckow R. High pressure application for food biopolymers[J]. Biochim Biophys Acta, 2006, 1764(3): 619-631. doi: 10.1016/j.bbapap.2006.01.017
    [49]
    Tschirret-Guth R A, Hoa G H B, de Montellano P R O. Pressure-induced deformation of the cytochrome P450cam active site[J]. J Am Chem Soc, 1998, 120(15): 3590-3596. doi: 10.1021/ja973909z
    [50]
    Tschirret-Guth R A, Koo L S, Hoa G H, et al. Reversible pressure deformation of a thermophilic cytochrome P450 enzyme(CYP119)and its active-site mutants[J]. J Am Chem Soc, 2001, 123(15): 3412-3417. doi: 10.1021/ja003947+
    [51]
    Li H, Yamada H, Akasaka K. Effect of pressure on the tertiary structure and dynamics of folded basic pancreatic trypsin inhibitor[J]. Biophys J, 1999, 77(5): 2801-2812. doi: 10.1016/S0006-3495(99)77112-2
    [52]
    Peng X, Jonas J, Silva J L. Molten-globule conformation of Arc repressor monomers determined by high-pressure 1H NMR spectroscopy[J]. Proc Natl Acad Sci, 1993, 90(5): 1776-1780. doi: 10.1073/pnas.90.5.1776
    [53]
    King L, Weber G. Conformational drift of dissociated lactate dehydrogenases[J]. Biochemistry, 1986, 25(12): 3632-3637. doi: 10.1021/bi00360a023
    [54]
    Silva J L, Miles E W, Weber G. Pressure dissociation and conformational drift of the beta dimer of tryptophan synthase[J]. Biochemistry, 1986, 25(19): 5780-5786. doi: 10.1021/bi00367a065
    [55]
    Ruan K, Weber G. Dissociation of yeast hexokinase by hydrostatic pressure[J]. Biochemistry, 1988, 27(9): 3295-3301. doi: 10.1021/bi00409a026
    [56]
    Panda M, Ybarra J, Horowitz P M. High hydrostatic pressure can probe the effects of functionally related ligands on the quaternary structures of the chaperonins GroEL and GroES[J]. J Biol Chem, 2001, 276(9): 6253-6259. doi: 10.1074/jbc.M009530200
    [57]
    Paladini A A Jr, Weber G. Pressure-induced reversible dissociation of enolase[J]. Biochemistry, 1981, 20(9): 2587-2593. doi: 10.1021/bi00512a034
    [58]
    Royer C A, Weber G, Daly T J, et al. Dissociation of the lactose repressor protein tetramer using high hydrostatic pressure[J]. Biochemistry, 1986, 25(25): 8308-8315. doi: 10.1021/bi00373a027
    [59]
    Rietveld A W, Ferreira S T. Deterministic pressure dissociation and unfolding of triose phosphate isomerase: Persistent heterogeneity of a protein dimer[J]. Biochemistry, 1996, 35(24): 7743-7751. doi: 10.1021/bi952118b
    [60]
    Ruan K, Weber G. Hysteresis and conformational drift of pressure-dissociated glyceraldehydephosphate dehydrogenase[J]. Biochemistry, 1989, 28(5): 2144-2153. doi: 10.1021/bi00431a028
    [61]
    Peng X, Jonas J, Silva J L. High-pressure NMR study of the dissociation of Arc repressor[J]. Biochemistry, 1994, 33(27): 8323-8329. doi: 10.1021/bi00193a020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views(7236) PDF downloads(297) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return