Volume 28 Issue 4
Mar 2015
Turn off MathJax
Article Contents
DENG Xin-Ping, LEI Jie-Hong, BAI Jin-Song, LIU Kun. Numerical Simulation of Cylindrical Interface Instability by Using Multicomponent Gas Kinetic Scheme[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 407-415. doi: 10.11858/gywlxb.2014.04.004
Citation: DENG Xin-Ping, LEI Jie-Hong, BAI Jin-Song, LIU Kun. Numerical Simulation of Cylindrical Interface Instability by Using Multicomponent Gas Kinetic Scheme[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 407-415. doi: 10.11858/gywlxb.2014.04.004

Numerical Simulation of Cylindrical Interface Instability by Using Multicomponent Gas Kinetic Scheme

doi: 10.11858/gywlxb.2014.04.004
  • Received Date: 17 Sep 2013
  • Rev Recd Date: 13 Dec 2013
  • Air/He and air/R22 cylindrical interface instabilities were calculated by gas kinetic scheme (GKS) under the assumption that the components have the same temperature and velocity in the cell.The density distributions at different time, the displacement histories and the average velocity of characteristic points at the interface were obtained.The displacements of characteristic points increased with time gradually when the shock wave passed through the interface.The average velocities of characteristic points agreed with the results of previous experiments and numerical simulations very well.The comparisons between the simulation results and literature data suggest that the GKS which is based on the particles movement has a good simulation performance for the cylindrical interface instability.

     

  • loading
  • [1]
    Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Commun Pur Appl Math, 1960, 13(2): 297-319. doi: 10.1002/cpa.3160130207
    [2]
    Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dyn, 1969, 4(5): 101-104. doi: 10.1007/BF01015969
    [3]
    Pilliod Jr J E, Puckett E G. Second-order accurate volume-of-fluid algorithms for tracking material interfaces[J]. J Comput Phys, 2004, 199(2): 465-502. doi: 10.1016/j.jcp.2003.12.023
    [4]
    Fedkiw R P, Aslam T, Merriman B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows(the ghost fluid method)[J]. J Comput Phys, 1999, 152(2): 457-492. doi: 10.1006/jcph.1999.6236
    [5]
    Holmes R L, Grove J W, Sharp D H. Numerical investigation of Richtmyer-Meshkov instability using front tracking[J]. J Fluid Mech, 1995, 301: 51-64. doi: 10.1017/S002211209500379X
    [6]
    Quirk J J, Karni S. On the dynamics of a shock-bubble interaction[J]. J Fluid Mech, 1996, 318: 129-163. doi: 10.1017/S0022112096007069
    [7]
    Marquina A, Mulet P. A flux-split algorithm applied to conservative models for multicomponent compressible flows[J]. J Comput Phys, 2003, 185(1): 120-138. doi: 10.1016/S0021-9991(02)00050-5
    [8]
    柏劲松, 王涛, 邹立勇, 等.可压缩多介质粘性流体和湍流的大涡模拟[J].爆炸与冲击, 2010, 30(3): 262-268. http://www.cqvip.com/Main/Detail.aspx?id=34539420

    Bai J S, Wang T, Zou L Y, et al. Large eddy simulation for the multi-viscosity-fluid and turbulence[J]. Explosion and Shock Waves, 2010, 30(3): 262-268. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=34539420
    [9]
    Anderson R W, Elliott N S, Pember R B. An arbitrary Lagrangian-Eulerian method with adaptive mesh refinement for the solution of the Euler equations[J]. J Comput Phys, 2004, 199(2): 598-617. doi: 10.1016/j.jcp.2004.02.021
    [10]
    Xu K. BGK-based scheme for multicomponent flow calculations[J]. J Comput Phys, 1997, 134(1): 122-133. doi: 10.1006/jcph.1997.5677
    [11]
    Lian Y S, Xu K. A gas-kinetic scheme for multimaterial flows and its application in chemical reactions[J]. J Comput Phys, 2000, 163(2): 349-375. doi: 10.1006/jcph.2000.6571
    [12]
    Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. Ⅰ. Small amplitude processes in charged and neutral one-component systems[J]. Phy Rev, 1954, 94: 511-525. doi: 10.1103/PhysRev.94.511
    [13]
    李启兵, 徐昆.气体动理学格式研究进展[J].力学进展, 2012, 42(5): 522-537. http://d.wanfangdata.com.cn/Periodical/lxjz201205002

    Li Q B, Xu K. Progress in gas-kinetic scheme[J]. Advances in Mechanics, 2012, 42(5): 522-537. (in Chinese) http://d.wanfangdata.com.cn/Periodical/lxjz201205002
    [14]
    Haas J F, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. J Fluid Mech, 1987, 181: 41-76. doi: 10.1017/S0022112087002003
    [15]
    Xu K. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method[J]. J Comput Phys, 2001, 171(1): 289-335. doi: 10.1006/jcph.2001.6790
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(7000) PDF downloads(204) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return