Volume 28 Issue 4
Mar 2015
Turn off MathJax
Article Contents
ZHANG Pan, JIANG Yi-Xuan, WANG Xing-Zhe, HE Hong-Liang. Analysis of Depolarization and Discharge Process of PZT 95/5 Ferroelectric Ceramic under Normal Shock Loading[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 399-406. doi: 10.11858/gywlxb.2014.04.003
Citation: ZHANG Pan, JIANG Yi-Xuan, WANG Xing-Zhe, HE Hong-Liang. Analysis of Depolarization and Discharge Process of PZT 95/5 Ferroelectric Ceramic under Normal Shock Loading[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 399-406. doi: 10.11858/gywlxb.2014.04.003

Analysis of Depolarization and Discharge Process of PZT 95/5 Ferroelectric Ceramic under Normal Shock Loading

doi: 10.11858/gywlxb.2014.04.003
  • Received Date: 03 Sep 2012
  • Rev Recd Date: 22 Nov 2012
  • Bound charges of poled PZT 95/5 ferroelectric ceramics will be released under shock wave loading to form a high-power electrical energy output.For a shock loading perpendicular to the polarization direction, a model describing the depolarization and discharge process of PZT 95/5 ceramic by normal shock-wave is proposed in this paper.The effects of shock-wave pressure on the wave velocity and depolarization phase transition process were considered systematically.The depoling process of PZT 95/5 ferroelectric ceramics was analyzed by a parallel circuit with a current source, a capacitance and a conductance.The changes in the dielectric constant and conductivity during shock loading were taken into account.The output current characteristics of ferroelectric ceramics discharging process under short circuit and resistive load conditions, and the effects of changes in the dielectric constant and conductivity were analyzed and compared with the experimental results.The results show that the present theoretical model predicts well the discharge process of PZT95/5 ferroelectric ceramics under shock compression.

     

  • loading
  • [1]
    Setchell R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Microstructural effects[J]. J Appl Phys, 2007, 101(5): 053525. doi: 10.1063/1.2697428
    [2]
    Nie H C, Dong X L, Feng N B, et al. Quantitative dependence of the properties of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics on porosity[J]. Mater Res Bull, 2010, 45(5): 564-567. doi: 10.1016/j.materresbull.2010.01.022
    [3]
    Fritz I J. Uniaxial-stress effects in a 95/5 lead zirconate titanate ceramic[J]. J Appl Phys, 1978, 49(9): 4922-4928. doi: 10.1063/1.325527
    [4]
    Lysne P C. Dielectric breakdown of shock-loaded PZT65/35[J]. J Appl Phys, 1973, 44(2): 577-582. doi: 10.1063/1.1662227
    [5]
    Lysne P C. Prediction of dielectric breakdown in shock-loaded ferroelectric ceramics[J]. J Appl Phys, 1975, 46(1): 230-232. doi: 10.1063/1.321326
    [6]
    Sindeyev Y G, Yurkevich V E. Electrical breakdown in ferroelectric ceramics(a review)[J]. Ferroelectrics, 1990, 110: 193-218. doi: 10.1080/00150199008008916
    [7]
    Lysne P C, Percival C M. Electric energy generation by shock compression of ferroelectric ceramics: Normal-mode response of PZT 95/5[J]. J Appl Phys, 1975, 46(4): 1519-1525. doi: 10.1063/1.321803
    [8]
    Mazzie J A. Simplified model of ferroelectric energy generation by shock compression[J]. J Appl Phys, 1977, 48(3): 1368-1369. doi: 10.1063/1.323735
    [9]
    Mock W Jr, Holt W H. Pulse charging of nanofarad capacitors from the shock depoling of PZT 56/44 and PZT 95/5 ferroelectric ceramics[J]. J Appl Phys, 1978, 49(12): 5846-5854. doi: 10.1063/1.324602
    [10]
    贺元吉.爆电能源高功率超宽带脉冲发生器研究[D].长沙: 国防科学技术大学, 2001: 34-38.

    He Y J. Study of explosive electrical energy and high power ultra-wideband pulse generator[D]. Changsha: National University of Defense Technology, 2001: 34-38. (in Chinese)
    [11]
    Bolyard D W, Neuber A A, Krile J T, et al. Simulation of compact explosively driven ferroelectric generators[J]. IEEE Trans Plasma Sci, 2010, 38(4): 1008-1014. doi: 10.1109/TPS.2010.2040819
    [12]
    Setchell R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Depoling currents[J]. J Appl Phys, 2005, 97(1): 013507. doi: 10.1063/1.1828215
    [13]
    Jiang D D, Du J M, Gu Y, et al. Phenomenological description of depoling current in Pb0.99Nb0.02(Zr0.95Ti0.05)0.98O3 ferroelectric ceramics under shock wave compression: Relaxation model[J]. J Appl Phys, 2012, 111(10): 104102. doi: 10.1063/1.4716461
    [14]
    王礼立.应力波基础[M].北京: 国防工业出版社, 1983: 165-166.

    Wang L L. Foundation of Stress Waves[M]. Beijing: National Defense Industry Press, 1983: 165-166. (in Chinese)
    [15]
    经福谦.实验物态方程导引[M].第2版.北京: 科学出版社, 1999: 90.

    Jing F Q. Introduction to Experimental Equation of State[M]. 2nd Ed. Beijing: Science Press, 1999: 90. (in Chinese)
    [16]
    温殿英, 林其文.冲击波压缩PZT-95/5铁电陶瓷的电介质击穿[J].高压物理学报, 1998, 12(3): 199-206. http://www.cqvip.com/QK/96553X/199803/3210138.html

    Wen D Y, Lin Q W. Dielectric breakdown of ferroelectric ceramics PZT-95/5 under shock compression[J]. Chinese Journal of High Pressure Physics, 1998, 12(3): 199-206. (in Chinese) http://www.cqvip.com/QK/96553X/199803/3210138.html
    [17]
    Reynolds C E, Seay G E. Two-wave shock structures in the ferroelectric ceramics barium titanate and lead zirconate titanate[J]. J Appl Phys, 1962, 33(7): 2234-2241. doi: 10.1063/1.1728934
    [18]
    刘高旻.高密度PZT95/5陶瓷的冲击相变及放电性能研究[D].绵阳: 中国工程物理研究院, 2009: 80-88.

    Liu G M. The study of shock phase transition and discharge performance of high-density PZT 95/5 ceramics[D]. Mianyang: China Academy of Engineering Physics, 2009: 80-88. (in Chinese)
    [19]
    Jiang D D, Du J M, Gu Y, et al. Self-generated electric field suppressing the ferroelectric to antiferroelectric phase transition in ferroelectric ceramics under shock wave compression[J]. J Appl Phys, 2012, 111(2): 024103. doi: 10.1063/1.3678005
    [20]
    Yang P, Payne D A. The effect of external field symmetry on the antiferroelectric-ferroelectric phase transformation[J]. J Appl Phys, 1996, 80(7): 4001-4005. doi: 10.1063/1.363358
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views(6936) PDF downloads(331) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return