Volume 28 Issue 4
Mar 2015
Turn off MathJax
Article Contents
LIU Xiu-Ru, WANG Ming-You, ZHANG Dou-Dou, ZHANG Chen-Ran, HE Zhu, CHEN Li-Ying, SHEN Ru, HONG Shi-Ming. Progress in Preparation of Bulk Metastable Materials by Rapid Compression-Induced Solidification[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 385-393. doi: 10.11858/gywlxb.2014.04.001
Citation: LIU Xiu-Ru, WANG Ming-You, ZHANG Dou-Dou, ZHANG Chen-Ran, HE Zhu, CHEN Li-Ying, SHEN Ru, HONG Shi-Ming. Progress in Preparation of Bulk Metastable Materials by Rapid Compression-Induced Solidification[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 385-393. doi: 10.11858/gywlxb.2014.04.001

Progress in Preparation of Bulk Metastable Materials by Rapid Compression-Induced Solidification

doi: 10.11858/gywlxb.2014.04.001
  • Received Date: 28 Jun 2012
  • Rev Recd Date: 20 Sep 2012
  • The method of preparing metastable materials (e.g.amorphous materials) by rapid compression-induced solidification and related research progress are reviewed in this paper.The authors prepared successfully bulk amorphous polymer PET (ethylene terephthalate), amorphous polymer PEEK (polyetheretherketone), mesomorphic phase of polymer iPP (isotactic polypropylene), amorphous sulfur, nanophase selenium, and two metallic glass La68Al10Cu20Co2 and Nd60Cu20Ni10Al10 using a rapid compression apparatus.These results indicate that the rapid compression is an effective method to prepare bulk metastable materials of many substances.It has been clearly demonstrated by recent experimental results that the size of metastable materials prepared by this method is not restricted by thermal conductivity, and furthermore it has been found that there exist a critical pressure and a critical compression rate of obtaining metastable phase during the rapid compression-induced solidification.

     

  • loading
  • [1]
    Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187: 869-870.
    [2]
    Turnbull D. Metastable structures in metallurgy[J]. Metall Trans A, 1981, 12(5): 695-708. doi: 10.1007/BF02648333
    [3]
    Mishima O, Calvert L D, Whalley E. 'Melting ice' Ⅰ at 77 K and 10 kbar: A new method of making amorphous solids[J]. Nature, 1984, 310: 393-395. doi: 10.1038/310393a0
    [4]
    Hemley R J, Jephcoat A P, Mao H K, et al. Pressure-induced amorphization of crystalline silica[J]. Nature, 1988, 334: 52-54. doi: 10.1038/334052a0
    [5]
    Hemley R J, Chen L C, Mao H K. New transformations between crystalline and amorphous ice[J]. Nature, 1989, 338: 638-640. doi: 10.1038/338638a0
    [6]
    Aasland S, McMillan P F. Density-driven liquid-liquid phase separation in the system Al2O3-Y2O3[J]. Nature, 1994, 369: 633-636. doi: 10.1038/369633a0
    [7]
    Zou G T, Liu Z X, Wang L Z, et al. Pressure-induced amorphization of crystalline Bi4Ge3O12[J]. Phys Lett A, 1991, 156(7/8): 450-454.
    [8]
    王文魁.亚稳相的高压暴露[J].高压物理学报, 1989, 3(4): 257-268.

    Wang W K. Exposure of metastable phases by high pressure[J]. Chinese Journal of High Pressure Physics, 1989, 3(4): 257-268. (in Chinese)
    [9]
    王文魁, 许应凡, 黄新明.高压下Pd40Ni40P20过冷熔体的成核及大块金属玻璃形成[J].中国科学A辑, 1992(12): 1305-1310.

    Wang W K, Xu Y F, Huang X M. Crystal nucleation and formation of bulk metallic glass in undercooled Pd40Ni40P20 melt under high pressure[J]. Science in China(Series A), 1992(12): 1305-1310. (in Chinese)
    [10]
    秦志成, 张云, 张富祥, 等.高压淬火直接形成Pd-Si块状纳米晶合金[J].物理学报, 1995, 44(1): 105-108.

    Qin Z C, Zhang Y, Zhang F X, et al. Preparation of bulk Pd-Si nanocrystalline alloy by pressure-quenching from melt[J]. Acta Physica Sinica, 1995, 44(1): 105-108. (in Chinese)
    [11]
    Xu Y F, Huang X M, Wang W K. Preparation of bulk metallic glass Pd40Ni40P20 under high pressure[J]. Appl Phys Lett, 1990, 56(20): 1957-1958. doi: 10.1063/1.103227
    [12]
    Wang W H, Wang R J, Zhao D Q, et al. Microstructural transformation in a Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass under high pressure[J]. Phys Rev B, 2000, 62: 11292-11295. doi: 10.1103/PhysRevB.62.11292
    [13]
    Wang Z X, Li F Y, Pan M X, et al. Effects of high pressure on the nucleation of Cu60Zr20Hf10Ti10 bulk metallic glass[J]. J Alloy Compd, 2005, 388(2): 262-265. doi: 10.1016/j.jallcom.2004.07.025
    [14]
    Yu P, Bai H Y, Zhao J G, et al. Pressure effects on mechanical properties of bulk metallic glass[J]. Appl Phys Lett, 2007, 90(5): 051906. doi: 10.1063/1.2435977
    [15]
    Hirai H, Kondo K, Yoshizawa N, et al. Amorphous diamond from C60 fullerene[J]. Appl Phys Lett, 1994, 64(14): 1797-1799. doi: 10.1063/1.111811
    [16]
    Yang C, Liu R P, Zhan Z J, et al. Formation of ZrTiCuNiBe bulk metallic glass by shock-wave quenching[J]. Appl Phys Lett, 2005, 87(5): 051904. doi: 10.1063/1.2005367
    [17]
    He D W, Zhang F X, Zhang M, et al. Quenching with rapid decompression: A new method for rapid solidification[J]. Appl Phys Lett, 1997, 71(26): 3811-3813. doi: 10.1063/1.120542
    [18]
    Hong S M, Chen L Y, Liu X R, et al. High pressure jump apparatus for measuring Grüneisen parameter of NaCl and studying metastable amorphous phase of poly(ethylene terephthalate)[J]. Rev Sci Instrum, 2005, 76(5): 053905. doi: 10.1063/1.1899443
    [19]
    Boehler R, Getting I C, Kennedy G C. Grüneisen parameter of NaCl at high compressions[J]. J Phys Chem Solids, 1977, 38(3): 233-236. doi: 10.1016/0022-3697(77)90095-6
    [20]
    Wu C H, Lin C F, Lo S L, et al. A review paper on the kinetic study of the pressure-jump method[J]. Proc Natl Sci Counc Repub China A, 1999, 23(4): 466-478.
    [21]
    Heremans K, Ceuterick F, Rijkenberg J. High pressure pressure-jump apparatus[J]. Rev Sci Instrum, 1980, 51(2): 252-253. doi: 10.1063/1.1136168
    [22]
    Quednau J, Schneider G M. A new high-pressure cell for differential pressure-jump experiments using optical detection[J]. Rev Sci Instrum, 1989, 60(12): 3685-3687. doi: 10.1063/1.1140475
    [23]
    Leonardo R D, Scopigno T, Ruocco G, et al. Spectroscopic cell for fast pressure jumps across the glass transition line[J]. Rev Sci Instrum, 2004, 75(8): 2631-2637. doi: 10.1063/1.1763253
    [24]
    Woenckhaus J, Köhling R, Winter R, et al. High pressure-jump apparatus for kinetic studies of protein folding reactions using the small-angle synchrotron X-ray scattering technique[J]. Rev Sci Instrum, 2000, 71(10): 3895-3899. doi: 10.1063/1.1290508
    [25]
    Font J, Torrent J, Rib M, et al. Pressure-jump-induced kinetics reveals a hydration dependent folding/unfolding mechanism of ribonuclease A[J]. Biophys J, 2006, 91: 2264-2274. doi: 10.1529/biophysj.106.082552
    [26]
    Dumont C, Emilsson T, Gruebele M. Reaching the protein folding speed limit with large, sub-microsecond pressure jumps[J]. Nat Methods, 2009, 6: 515-519. doi: 10.1038/nmeth.1336
    [27]
    Heuert U, Krumova M, Hempel G, et al. NMR probe for pressure-jump experiments up to 250 bars and 3 ms jump time[J]. Rev Sci Instrum, 2010, 81(10): 105102. doi: 10.1063/1.3481164
    [28]
    Brooks N J, Gauthe B L L E, Terrill N J, et al. Automated high pressure cell for pressure jump X-ray diffraction[J]. Rev Sci Instrum, 2010, 81(6): 064103. doi: 10.1063/1.3449332
    [29]
    陈丽英.快速大幅度增压法测量NaCl的Grüneisen参数[D].成都: 西南交通大学, 2006: 11-23.

    Chen L Y. Measuring Grüneisen parameter of NaCl by double-quick and larger range compression[D]. Chengdu: Southwest Jiaotong University, 2006: 11-23. (in Chinese)
    [30]
    刘秀茹.快速增压法制备大块金属玻璃及金属玻璃的高压相变研究[D].成都: 西南交通大学, 2007: 9-109.

    Liu X R. Production of bulk metallic glass by rapid compression and phase transition under high pressure[D]. Chengdu: Southwest Jiaotong University, 2007: 9-109. (in Chinese)
    [31]
    Hong S M, Liu X R, Su L, et al. Rapid compression induced solidification of two amorphous phases of poly(ethylene terephthalate)[J]. J Phys D, 2006, 39(10): 3684-3688.
    [32]
    Li L B, Hong S M, Huang R. Effect of pressure on the crystallization behaviour of polyethylene terephthalate[J]. J Phys Condens Matter, 2002, 14(44): 11195-11198. doi: 10.1088/0953-8984/14/44/452
    [33]
    Yuan C S, Hong S M, Li X X, et al. Rapid compression preparation and characterization of oversized bulk amorphous polyether-ether-ketone[J]. J Phys D, 2011, 44(16): 165405. doi: 10.1088/0022-3727/44/16/165405
    [34]
    袁朝圣.大块非晶Nd基合金及聚醚醚酮的快速增压制备与性能研究[D].成都: 西南交通大学, 2011: 31-84.

    Yuan C S. Praperations of bulk Nd-based metallic glass and bulk amorphous poly-ether-ether-ketone by rapid compression and their property studies[D]. Chengdu: Southwest Jiaotong University, 2011: 31-84. (in Chinese)
    [35]
    Wang M Y, Liu X R, Zhang C R, et al. Compression-rate dependence of solidified structure from melt in isotactic polypropylene[J]. J Phys D, 2013, 46(14): 145307. doi: 10.1088/0022-3727/46/14/145307
    [36]
    Jia R, Shao C G, Su L, et al. Rapid compression induced solidification of bulk amorphous sulfur[J]. J Phys D, 2007, 40(12): 3763-3766. doi: 10.1088/0022-3727/40/12/030
    [37]
    贾茹.氩的高温高压布里渊散射研究及快速增压制备大块非晶硫[D].成都: 西南交通大学, 2008: 78-98.

    Jia R. Brillouin scattering study of argon at high pressures and high temperatures and rapid compression induced solidification of bulk amorphous sulfur[D]. Chengdu: Southwest Jiaotong University, 2008: 78-98. (in Chinese)
    [38]
    Yu P, Wang W H, Wang R J, et al. Understanding exceptional thermodynamic and kinetic stability of amorphous sulfur obtained by rapid compression[J]. Appl Phys Lett, 2009, 94(1): 011910. doi: 10.1063/1.3064125
    [39]
    Shao C G, An H N, Wang X, et al. Deformation-induced linear chain-ring transition and crystallization of living polymer sulfur[J]. Macromolecules, 2007, 40(26): 9475-9481. doi: 10.1021/ma071803a
    [40]
    邵春光.原位X射线检测聚合物(非晶硫、sPP)拉伸过程中的结构变化与力学性能关系[D].成都: 西南交通大学, 2009: 56-75.

    Shao C G. In situ X-ray diffraction study of the relationship between microstructure and mechanical properties of amorphous sulfur and sPP[D]. Chengdu: Southwest Jiaotong University, 2009: 56-75. (in Chinese)
    [41]
    Lin S X, Liu X R, Shao C G, et al. Effect of iodine additive on thermostability of bulk amorphous sulfur prepared by rapid compression[J]. Chin Phys Lett, 2011, 28(8): 086102. doi: 10.1088/0256-307X/28/8/086102
    [42]
    林胜雄.快压凝固法制备大块掺杂非晶硫及其热稳定性研究[D].成都: 西南交通大学, 2008: 29-43.

    Lin S X. Preparation of thermally stable bulk amorphous sulfur with additive by rapid compression[D]. Chengdu: Southwest Jiaotong University, 2008: 29-43. (in Chinese)
    [43]
    Liu X R, Hong S M, Lu S J, et al. Preparation of La68Al10Cu20Co2 bulk metallic glass by rapid compression[J]. Appl Phys Lett, 2007, 91(8): 081910. doi: 10.1063/1.2773751
    [44]
    Yuan C S, Liu X R, Shen R, et al. Preparation of thermo-stable bulk metallic glass of Nd60Cu20Ni10Al10 by rapid compression[J]. Chin Phys Lett, 2010, 27(9): 096202. doi: 10.1088/0256-307X/27/9/096202
    [45]
    Hu Y, Su L, Liu X R, et al. Preparation of high-density nanocrystalline bulk selenium by rapid compressing of melt[J]. Chin Phys Lett, 2010, 27(3): 038101. doi: 10.1088/0256-307X/27/3/038101
    [46]
    胡云. Bridgman对顶砧的加压性能及快压制备高密度纳米硒块体材料的研究[D].成都: 西南交通大学, 2010: 48-64.

    Hu Y. The features of Bridgman anvil in application of high pressure and praperation of high-density nanocrystalline bulk senenium by rapid compression[D]. Chengdu: Southwest Jiaotong University, 2010: 48-64. (in Chinese)
    [47]
    Evans W J, Yoo C S, Lee G W, et al. Dynamic diamond anvil cell(dDAC): A novel device for studying the dynamic-pressure properties of materials[J]. Rev Sci Instrum, 2007, 78(7): 073904. doi: 10.1063/1.2751409
    [48]
    Chen J Y, Yoo C S. Formation and phase transitions of methane hydrates under dynamic loadings: Compression rate dependent kinetics[J]. J Chem Phys, 2012, 136(11): 114513. doi: 10.1063/1.3695212
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(6769) PDF downloads(356) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return