Volume 28 Issue 3
Jun 2015
Turn off MathJax
Article Contents
GONG Yun-Yun, LU Ji, GU Zhuo-Wei, SONG Zhen-Fei, ZHAO Shi-Cao, MO Jian-Jun, TAO Yan-Hui. Study on the Compression Properties of Periodic Copper Wire Closed-Packed Structure[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 331-338. doi: 10.11858/gywlxb.2014.03.011
Citation: GONG Yun-Yun, LU Ji, GU Zhuo-Wei, SONG Zhen-Fei, ZHAO Shi-Cao, MO Jian-Jun, TAO Yan-Hui. Study on the Compression Properties of Periodic Copper Wire Closed-Packed Structure[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 331-338. doi: 10.11858/gywlxb.2014.03.011

Study on the Compression Properties of Periodic Copper Wire Closed-Packed Structure

doi: 10.11858/gywlxb.2014.03.011
  • Received Date: 05 Mar 2013
  • Rev Recd Date: 23 Sep 2013
  • A kind of copper wire closed-packed structure was compressed by one-dimensional strain impacting and the dynamic process was numerically simulated.The laser displacement interferometer was used to measure the interface particle velocity profile and the effective experimental data of structure impact compression were obtained.It can be inferred from the interface velocity curve that no compact structure was formed in the sample during the shock compressing progress, and the delamination of sample happened during the unloading progress.The three-dimensional numerical model of plane copper wire closed-packed structure was built by using smoothed particle hydrodynamics (SPH) method, and the shock compression properties of sample were obtained.The interface particle velocities and pressure of the sample were in good agreement between experiments and simulations.

     

  • loading
  • [1]
    Hawke R S, Duerre D E, Huebel J G, et al. Method of isentropically compressing materials to several megabars[J]. J Appl Phys, 1972, 43(11): 2734-2741. http://www.nature.com/nature-physci/journal/v233/n39/abs/physci233079a0.html
    [2]
    Boriskov G V, Belov S I, Bykov A I, et al. Conductivity and permittivity of hydrogen under isentropic magnetic compression up to 3 Mbar[J]. J Low Temp Phys, 2010, 159(1): 307-310. doi: 10.1007/s10909-009-0124-4
    [3]
    Bykov A I. VNIIEF achievements on ultra-high magnetic fields generation[J]. Phys B, 2002, 294(2): 574-578. http://www.sciencedirect.com/science/article/pii/S0921452600007237
    [4]
    Bykov A I, Dolotenko M I, Kolokol′chikov N P, et al. The cascade magnetocumulative generator of ultra-high magnetic fields—A reliable tool for megagauss physics[J]. Physica B, 1996, 216(1): 215-217. http://www.sciencedirect.com/science/article/pii/0921452695004750
    [5]
    张柱, 赵慧, 于晖.混凝土材料动态力学性能实验与数值模拟研究[J].高压物理学报, 2011, 25(6): 533-538. http://www.cnki.com.cn/Article/CJFDTotal-GYWL201106010.htm

    Zhang Z, Zhao H, Yu H. Experiments and numerical simulations of concrete dynamic mechanical properties[J]. Chinese Journal of High Pressure Physic, 2011, 25(6): 533-538. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GYWL201106010.htm
    [6]
    胡时胜, 王道荣, 刘剑飞.混凝土材料动态力学性能的试验研究[J].工程力学, 2001, 8(5): 115-126.

    Hu S S, Wang D R, Liu J F. Experiment study on dynamic mechanical behavior of concrete materials[J]. Engineering Mechanics, 2001, 8(5): 115-126. (in Chinese)
    [7]
    Richardson M O W, Wisheart M J. Review of low-velocity impact properties of composite materials[J]. Composites, 1996, 27(12): 1123-1131. doi: 10.1016/1359-835X(96)00074-7
    [8]
    Choi H Y. Damage in grahite-expoxy laminated composites due to low-velocity impact[D]. ProQuest Dissertations and Thesises, 1991.
    [9]
    Ramadhan A A, Abu Talib A R, Mohd Rafie A S, et al. High velocity impact response of Kevlar-29/epoxy and 6061-T6 aluminum laminated panels[J]. Mater Des, 2013, 43(2): 307-321. http://www.sciencedirect.com/science/article/pii/S0261306912004074
    [10]
    Silvestrov V V, Plastinin A V, Gorshkov N N. Hypervelocity impact on Laminate composite panels[J]. Int J Impact Eng, 1995, 17: 751-762. doi: 10.1016/0734-743X(95)99897-Z
    [11]
    Ryan S, Schaefer F, Riedel W. Numerical simulation of hypervelocity impact on CFRP/Al HC SP spacecraft structures causing penetration and fragment ejection[J]. Int J Impact Eng, 2006, 33: 703-712. doi: 10.1016/j.ijimpeng.2006.09.072
    [12]
    Chen J K, Allahdadi F A, Carney T C. High-velocity impact of graphite/epoxy composite laminates[J]. Compos Sci Technol, 1997, 57(9/10): 1369-1379. http://www.sciencedirect.com/science/article/pii/S0266353897000675
    [13]
    Clegg R A, White D M, Riedelb W, et al. Hypervelocity impact damage prediction in composites: Part I-material model and characterisation[J]. Int J Impact Eng, 2006, 33: 190-200. doi: 10.1016/j.ijimpeng.2006.09.055
    [14]
    赵士操.基于AUTODYN二次开发的超高速碰撞建模与计算[D].绵阳: 中国工程物理研究院, 2012.

    Zhao S C. Hypervelocity impact modeling and calculation of two secondary development based on AUTODYN[D]. Mianyang: China Academy of Engineering Physics, 2012. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(6336) PDF downloads(244) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return