Volume 28 Issue 3
Jun 2015
Turn off MathJax
Article Contents
DENG Li, LIU Hong, TIAN Hua, DU Jian-Guo, LIU Lei. First-Principles Molecular Dynamics Study of the Structure of MgSiO3 Melt at High Temperatures and High Pressures[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 273-282. doi: 10.11858/gywlxb.2014.03.003
Citation: DENG Li, LIU Hong, TIAN Hua, DU Jian-Guo, LIU Lei. First-Principles Molecular Dynamics Study of the Structure of MgSiO3 Melt at High Temperatures and High Pressures[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 273-282. doi: 10.11858/gywlxb.2014.03.003

First-Principles Molecular Dynamics Study of the Structure of MgSiO3 Melt at High Temperatures and High Pressures

doi: 10.11858/gywlxb.2014.03.003
  • Received Date: 30 Jan 2013
  • Rev Recd Date: 15 Apr 2013
  • The microstructures of MgSiO3 melt and their variation with temperature and pressure were investigated based on first-principles molecular dynamic simulations at high pressures (0-144 GPa) and high temperatures (2 000-6 000 K).The calculated first peak positions of the pair correlation function of O—Si, O—Mg and O—O under the condition of 0 GPa and 2 000 K are 0.163 5, 0.1 970 and 0.269 5 nm, respectively, which are consistent with the previous experimental values.As the pressure and temperature change, the structure of MgSiO3 melt undergoes a significant change.Especially when the pressure increases, the structure becomes denser.When the temperature is below 5 000 K, the average bond lengths between two atoms decrease with the increasing temperature with density 4.59 g/cm3.While under nomal or higher pressure, the average bond length change with the increasing temperature is not obvious.At 133 GPa and 4 000 K, the average bond lengths of O—Si, O—Mg and O—O are 0.161 0, 0.183 5 and 0.230 0 nm, respectively; the average Si—O coordination number increases from 4 to 6, and the number of bridging oxygen ratio increases from 31.3% to 72.9%, from atmospheric pressure to the core-mantle boundary.The knowledge of MgSiO3 melt microstructure is important to understand the mantle silicate fluid nature of mantle dynamics.

     

  • loading
  • [1]
    莫宣学.岩浆熔体结构[J].地质科技情报, 1985, 4: 21-23. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ198502005.htm

    Mo X X. Structure of magmatic melt[J]. Geological Science and Technology Information, 1985, 4: 21-23. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-DZKQ198502005.htm
    [2]
    朱承峰, 张传清.硅酸盐熔体结构学[M].北京: 地质出版社, 1996.

    Zhu C F, Zhang C Q. Structure of Silicate Melts[M]. Beijing: Geological Press, 1996. (in Chinese)
    [3]
    Mysen B O. The structure of silicate melts[J]. Ann Rev Earth Planet Sci, 1983, 11: 75-97. doi: 10.1146/annurev.ea.11.050183.000451
    [4]
    Mysen B O. Relationships between silicate melt structure and petrologic processes[J]. Earth-Sci Rev, 1990, 27: 281-365. doi: 10.1016/0012-8252(90)90055-Z
    [5]
    Karki B B. First-principles molecular dynamics simulations of silicate melts: Structural and dynamical properties[J]. Rev Mineral Geochem, 2010, 71(1): 355-389. http://www.researchgate.net/publication/250130814_First-Principles_Molecular_Dynamics_Simulations_of_Silicate_Melts_Structural_and_Dynamical_Properties
    [6]
    龚自正, 谢鸿森, 费英伟, 等.下地幔矿物研究及其进展[J].地学前缘, 2005, 12(1): 3-22. http://www.cnki.com.cn/Article/CJFDTotal-DXQY200501000.htm

    Gong Z Z, Xie H S, Fei Y W, et al. A review of recent advances on the Earth's lower mantle[J]. Earth Science Frontiers, 2005, 12(1): 3-22. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-DXQY200501000.htm
    [7]
    Levitas V I, Ma Y, Selvi E, et al. High-density amorphous phase of silicon carbide obtained under large plastic shear and high pressure[J]. Phys Rev B, 2012, 85: 054114-5. doi: 10.1103/PhysRevB.85.054114
    [8]
    Stixrude L, Karki B B. Structure and freezing of MgSiO3 liquid in Earth's lower mantle[J]. Science, 2005, 310: 297-299. doi: 10.1126/science.1116952
    [9]
    孙樯, 郑海飞, 谢鸿森, 等.硅酸盐熔体结构研究进展及意义[J].岩石学报, 2001, 17(2): 332-336. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200102018.htm

    Sun Q, Zheng H F, Xie H S, et al. The advance in silicate melt structure research and its significance[J]. Acta Petrologica Sinica, 2001, 17(2): 332-336. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-YSXB200102018.htm
    [10]
    Waseda Y, Toguri J M. Structure of silicate melts determined by X-ray diffraction[C]//Marumo F. Dynamics Process of Material Transport and Transformation in Earth's Interior. Tokyo: Terra Sci, 1990: 37-51.
    [11]
    Leea S K, Linb J F, Caid Y Q, et al. X-ray Raman scattering study of MgSiO3 glass at high pressure: Implication for triclustered MgSiO3 liquid in Earth's mantle[J]. PNAS, 2008, 105(23): 7925-7929. doi: 10.1073/pnas.0802667105
    [12]
    Yamada A, Inoue T, Urakawa S, et al. In situ X-ray experiment on the structure of hydrous Mg-silicate liquid under high pressure and high temperature[J]. Geophys Res Lett, 2007, 34(10): L10303. doi: 10.1029/2006GL028823
    [13]
    George A M, Stebbins J F. Structure and dynamics of magnesium in silicate melts: A high-temperature 25Mg NMR study[J]. Am Mineral, 1998, 83: 1022-1029. doi: 10.2138/am-1998-9-1010
    [14]
    Nobumasa F, Shino Y, Takehiko Y. Exploratory studies of silicate melt structure at high pressures and temperatures by in situ X-ray diffraction[J]. J Geophys Res, 2004, 109: B03203. doi: 10.1029/2003JB002650/full
    [15]
    Wilding M C, Benmore C J, Weber J K R. In situ diffraction studies of magnesium silicate liquids[J]. J Mater Sci, 2008, 43: 4707-4713. doi: 10.1007/s10853-007-2356-5
    [16]
    Kubicki J D, Lasaga A C. Molecular dynamics simulations of pressure and temperature effects on MgSiO3 and Mg2SiO4 melts and glasses[J]. Phys Chem Miner, 1991, 17: 661-673. doi: 10.1007/BF00202236
    [17]
    Martin G B, Spera F J, Ghiorso M S, et al. Structure, thermodynamic and transport properties of molten Mg2SiO4: Molecular dynamics simulations and model EOS[J]. Am Mineral, 2009, 94: 693-703. doi: 10.2138/am.2009.3087
    [18]
    Stixrude L, Koker N D, Sun N, et al. Thermodynamics of silicate liquids in deep Earth[J]. Earth Planet Sci Lett, 2009, 278: 226-232. doi: 10.1016/j.epsl.2008.12.006
    [19]
    Karki B B, Bhattarai D, Mookherjee M, et al. Visualization-based analysis of structural and dynamical properties of simulated hydrous silicate melt[J]. Phys Chem Miner, 2010, 37: 103-117. doi: 10.1007/s00269-009-0315-1
    [20]
    Mookherjee M, Stixrude L, Karki B B. Hydrous silicate melt at high pressure[J]. Nature, 2008, 452: 983-986. doi: 10.1038/nature06918
    [21]
    Karki B B, Stixrude L. Viscosity of MgSiO3 liquid at Earth's mantle conditions: Implications for an early magma ocean[J]. Science, 2010, 328: 740-742. doi: 10.1126/science.1188327
    [22]
    Nevins D, Spera F J, Ghiorso M S. Shear viscosity and diffusion in liquid MgSiO3: Transport properties and implications for terrestrial planet magma ocean[J]. Am Mineral, 2009, 94: 975-980. doi: 10.2138/am.2009.3092
    [23]
    Lacks D J, Rear D B, Orman J A V. Molecular dynamics investigation of viscosity, chemical diffusivities and partial molar volumes of liquids along the MgO-SiO2 joins as functions of pressure[J]. Geochim Cosmochim Ac, 2007, 71: 1312-1323. doi: 10.1016/j.gca.2006.11.030
    [24]
    Wan J T K, Duffy T S, Sandro S, et al. First principles study of density, viscosity, and diffusion coefficients of liquid MgSiO3 at conditions of the Earth's deep mantle[J]. J Geophys Res-Solid Earth, 2007, 112: B03208. doi: 10.1029/2005JB004135/full
    [25]
    Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comp Mater Sci, 1996, 6: 15-50. doi: 10.1016/0927-0256(96)00008-0
    [26]
    Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B, 1999, 59: 1758-1775. http://pubs.acs.org/servlet/linkout?suffix=ref44/cit44b&dbid=16&doi=10.1021%2Facs.langmuir.5b02784&key=10.1103%2FPhysRevB.59.1758
    [27]
    Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [28]
    Nose S. A unified formulation of the constant temperature molecular dynamics[J]. J Chem Phys, 1984, 81: 511-519. doi: 10.1063/1.447334
    [29]
    Williams Q, Garnero E J. Seismic evidence for partial melt at the base of Earth's mantle[J]. Science, 1996, 273: 1528-1530. doi: 10.1126/science.273.5281.1528
    [30]
    Lange R A, Carmichael I S E. Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties[J]. Geochim Cosmochim Acta, 1987, 51: 2931-2946. doi: 10.1016/0016-7037(87)90368-1
    [31]
    Sanchez-Valle C, Bass J D. Elasticity and pressure induced structural changes in vitreous MgSiO3-enstatite to lower mantle pressures[J]. Earth Planet Sci Lett, 2010, 295: 523-530. doi: 10.1016/j.epsl.2010.04.034
    [32]
    Akins J A, Luo S N, Asimow P D, et al. Shock-induced melting of MgSiO3 perovskite and implications for melts in Earth's lowermost mantle[J]. Geophys Res Lett, 2004, 31: L14612. doi: 10.1029/2004GL020237
    [33]
    Zeng Q S, Sheng H W, Ding Y, et al. Long-range topological order in metallic glass[J]. Science, 2011, 332: 1404-1406. doi: 10.1126/science.1200324
    [34]
    Tian H, Liu H, Zhang C, et al. Ab initio molecular dynamics simulation of binary Ni62.5Nb37.5 bulk metallic glass: Validation of the cluster-plus-glue-atom model[J]. J Mater Sci, 2012, 47: 7628-7634. doi: 10.1007/s10853-012-6306-5
    [35]
    Spera F J, Ghiorso M S, Nevins D. Structure, thermodynamic and transport properties of liquid MgSiO3: Comparison of molecular models and laboratory results[J]. Geochim Cosmochim Acta, 2011, 75: 1272-1296. doi: 10.1016/j.gca.2010.12.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(6820) PDF downloads(370) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return