Volume 28 Issue 3
Jun 2015
Turn off MathJax
Article Contents
XIA Ying, DING Xing, SONG Mao-Shuang, XIONG Xiao-Lin, SHAO Tong-Bin, LI Jian-Feng, HAO Xi-Luo. Temperature Determination and Thermal Structure Analysis on the Pressure Assembly of a Piston-Cylinder Apparatus[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 262-272. doi: 10.11858/gywlxb.2014.03.002
Citation: XIA Ying, DING Xing, SONG Mao-Shuang, XIONG Xiao-Lin, SHAO Tong-Bin, LI Jian-Feng, HAO Xi-Luo. Temperature Determination and Thermal Structure Analysis on the Pressure Assembly of a Piston-Cylinder Apparatus[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 262-272. doi: 10.11858/gywlxb.2014.03.002

Temperature Determination and Thermal Structure Analysis on the Pressure Assembly of a Piston-Cylinder Apparatus

doi: 10.11858/gywlxb.2014.03.002
  • Received Date: 05 Nov 2012
  • Rev Recd Date: 07 Jan 2013
  • Piston-cylinder apparatus is widely used for high-pressure and high-temperature experiments.Its thermal structure in the pressure chamber depends mainly on design and materials of the sample assembly.Here we present a thermal structure analysis on the 13 mm pressure assembly of a QUICKpress piston-cylinder apparatus on the basis of the experimental temperature measurements using the double thermocouple determination, the spinel reaction progress thermometer, and heat conduction simulation by Fourier's law.The temperature measurements were conducted at 0.5 GPa, 1.0 GPa and 1.5 GPa with the control thermocouple in a temperature range of 800-1 400 ℃.The major results are summarized as follows:(1) the hot spot is always located at a position below the midpoint of effective furnace (this means that it is close to the steel base plug); (2) the hot spot region with a temperature variation within 20 ℃ possesses a width of 2.8 mm to 5.2 mm, showing a low thermal gradient of 7.7-13.0 ℃/mm while the region far from hot spot shows a much higher thermal gradient of 42-83 ℃/mm; (3) the position of hot spot moves toward the center or midpoint of effective furnace with pressure or temperature increasing, but the temperature profile is main determined by the temperature of hot spot, with the hot spot region becoming narrower and the thermal gradients for both the hot spot region and the region far from hot spot becoming larger with temperature increasing.On the basis of our experimental and numerical simulation results, effective factors controlling the thermal structure of pressure assembly of a piston-cylinder apparatus and other issues are further discussed.

     

  • loading
  • [1]
    Green D H, Hibberson W O, Kovács I, et al. Water and its influence on the lithosphere-asthenosphere boundary[J]. Nature, 2010, 467(7314): 448-451. doi: 10.1038/nature09369
    [2]
    Boyd F R, England J L. Apparatus for phase equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750 ℃[J]. J Geophys Res, 1960, 65(2): 741-748. doi: 10.1029/JZ065i002p00741
    [3]
    Watson E B, Wark D A, Price J D, et al. Mapping the thermal structure of solid-media pressure assemblies[J]. Contrib Mineral Petrol, 2002, 142(6): 640-652. doi: 10.1007/s00410-001-0327-4
    [4]
    Kushiro I. Changes in viscosity and structure of melt of NaAlSi3O8 composition at high pressures[J]. J Geophys Res, 1976, 81(35): 6347-6356. doi: 10.1029/JB081i035p06347
    [5]
    Walter M J, Thibault Y, Wei K, et al. Characterizing experimental pressure and temperature conditions in multianvil apparatus[J]. Canad J Phys, 1995, 73(5/6): 273-286. doi: 10.1139/p95-039
    [6]
    Takahashi E. Melting of dry peridotite KLB-1 up to 14 GPa: Implications on the origin of peridotitic upper mantle[J]. J Geophys Res, 1986, 91(B9): 9367-9386. doi: 10.1029/JB091iB09p09367
    [7]
    Walker D, Agee C B. Ureilite compaction[J]. Meteoritics, 1988, 23(1): 81-91. doi: 10.1111/j.1945-5100.1988.tb00899.x
    [8]
    Wark D A, Watson E B. Grain-scale channelization of pores due to gradients in temperature or composition of intergranular fluid or melt[J]. J Geophys Res, 2002, 107(B2): 2040-2045. doi: 10.1029/2001JB000365
    [9]
    Walker D, Lesher C E, Hays J F. Soret separation of lunar liquid[J]. Proc Lunar Planet Sci, 1981, 12B: 991-999. http://adsabs.harvard.edu/abs/1982LPSC...12..991W
    [10]
    Lesher C E, Walker D. Solution properties of silicate liquids from thermal diffusion experiments[J]. Geochim Cosmochim Ac, 1986, 50: 1397-1411. doi: 10.1016/0016-7037(86)90313-3
    [11]
    Lesher C E, Walker D. Cumulate maturation and melt migration in a temperature gradient[J]. J Geophys Res, 1988, 93(B9): 10295-10311. doi: 10.1029/JB093iB09p10295
    [12]
    Pickering J M, Schwab B E, Johnston A D. Off-center hot spots: Double thermocouple determination of the thermal gradient in a 1.27 cm(1/2 in.)CaF2 piston-cylinder furnace assembly[J]. Am Mineral, 1998, 83(3/4): 228-235. http://pubs.geoscienceworld.org/msa/ammin/article-pdf/83/3-4/228/3613586/228.pdf
    [13]
    Watson E B, Wark D A. Diffusion of dissolved SiO2 in H2O at 1 GPa, with implications for mass transport in the crust and upper mantle[J]. Contrib Mineral Petrol, 1997, 130(1): 66-80. doi: 10.1007/s004100050350
    [14]
    Kyser T K, Lesher C E, Walker D. The effects of liquid immiscibility and thermal diffusion on oxygen isotopes in silicate liquids[J]. Contrib Mineral Petrol, 1998, 133(4): 373-381. doi: 10.1007/s004100050459
    [15]
    Yang X S, J Z M, Ernst H, et al. Experimental study on dehydration melting of natural biotite-plagioclase gneiss from high Himalayas and implications for Himalayan crust anatexis[J]. Chin Sci Bullet, 2001, 46(10): 867-871. doi: 10.1007/BF02900441
    [16]
    Richter F M, Watson E B, Mendybaev R A, et al. Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion[J]. Geochim Cosmochim Ac, 2008, 72(1): 206-220. doi: 10.1016/j.gca.2007.10.016
    [17]
    Ding X, Sun W D, Huang F, et al. Different mobility of Nb and Ta along a thermal gradient[J]. Geochim Cosmochim Ac, 2007, 71(15): A226. http://www.irgrid.ac.cn/handle/1471x/339871
    [18]
    Huang F, Lundstrom C. Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation[J]. Geochim Cosmochim Ac, 2009, 73(3): 729-749. doi: 10.1016/j.gca.2008.11.012
    [19]
    Huang F, Chakraborty P, Lundstrom C, et al. Isotope fractionation in silicate melts by thermal diffusion[J]. Nature, 2010, 464(7287): 396-400. doi: 10.1038/nature08840
    [20]
    Ding X, Lundstrom C, Huang F, et al. Natural and experimental constraints on formation of the continental crust based on niobium-tantalum fractionation[J]. Int Geolog Rev, 2009, 51(6): 473-501. doi: 10.1080/00206810902759749
    [21]
    Cohen L H, Ito K, Kennedy G C. Melting and phase relations in an anhydrous basalt to 40 kilobars[J]. Am J Sci, 1967, 265(6): 475-518. doi: 10.2475/ajs.265.6.475
    [22]
    Dunn T. The piston-cylinder apparatus[C]//Luth R W. Experiments at High Pressure and Applications to the Earth's Mantle, MAC Short Course Handbook(Vol. 21). Mineralogical Association of Canada, 1993: 39-94.
    [23]
    Hudon P, Baker D R, Toft P B. A high-temperature assembly for 1.91 cm(3/4 in.)piston-cylinder apparatus[J]. Am Mineral, 1994, 79(1/2): 145-147. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9412160397&site=ehost-live
    [24]
    韩亮, 周永胜, 何昌荣, 等. 3 GPa熔融盐固体介质高温高压三轴压力容器的围压标定[J].高压物理学报, 2011, 25(3): 213-220. http://www.cnki.com.cn/Article/CJFDTotal-GYWL200906003.htm

    Han L, Zhou Y S, He C R, et al. Confined pressure calibration for 3 GPa molten salt medium triaxial pressure vessel under high pressure and temperature[J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 213-220. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GYWL200906003.htm
    [25]
    韩亮, 周永胜, 何昌荣, 等. 3 GPa熔融盐固体介质高温高压三轴压力容器的温度标定[J].高压物理学报, 2009, 23(6): 407-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb200906002

    Han L, Zhou Y S, He C R, et al. Temperature calibration for 3 GPa molten salt medium triaxial pressure vessel[J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 407-414. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb200906002
    [26]
    Nickel K G, Brey G P. Subsolidus orthoproxene-clinopyroxene systematics in the system CaO-MgO-SiO2 to 60 kb: A re-evaluation of the regular solution mode[J]. Contrib Mineral Petrol, 1984, 87(1): 35-42. doi: 10.1007/BF00371400
    [27]
    Schilling F R, Wunder B. Temperature distribution in piston-cylinder assemblies: Numerical simulations and laboratory experiments[J]. Eur J Mineral, 2004, 16(1): 7-14. http://adsabs.harvard.edu/abs/2004EJMin..16....7S
    [28]
    Kawashima Y, Yagi T. Temperature distribution in a cylindrical furnace for high-pressure use[J]. Rev Sci Instrum, 1988, 59(7): 1186-1188. doi: 10.1063/1.1139747
    [29]
    丁兴.俯冲工厂与大陆地壳的形成演化: 来自部分指示性元素活动性及高温高压实验的制约[D].广州: 中国科学院广州地球化学研究所, 2009.

    Ding X. Subduction factory and formation of the continental crust: Constraints from mobilities of indicative elements and high pressure experiment[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2009. (in Chinese)
    [30]
    Watson E B, Price J D. Kinetics of the reaction MgO+Al2O3→MgAl2O4 and Al-Mg interdiffusion in spinel at 1200 to 2000 ℃ and 1.0 to 4.0 GPa[J]. Geochim Cosmochim Ac, 2002, 66(15): 2123-2138. http://www.sciencedirect.com/science/article/pii/S001670370200827X
    [31]
    Powell R W, Ho C Y, Liley P E. Thermal conductivity of selected materials, ADD 095251[R]. Washington D C, USA: National Bureau of Standards, 1966.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(6751) PDF downloads(303) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return