Volume 28 Issue 2
Apr 2015
Turn off MathJax
Article Contents
REN Xiao-Guang, CUI Xue-Han, WU Bao-Jia, GU Guang-Rui. Electronic Structure and Lattice Dynamics of Intermetallic Compounds CaAlSi at High-Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 161-167. doi: 10.11858/gywlxb.2014.02.005
Citation: REN Xiao-Guang, CUI Xue-Han, WU Bao-Jia, GU Guang-Rui. Electronic Structure and Lattice Dynamics of Intermetallic Compounds CaAlSi at High-Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 161-167. doi: 10.11858/gywlxb.2014.02.005

Electronic Structure and Lattice Dynamics of Intermetallic Compounds CaAlSi at High-Pressure

doi: 10.11858/gywlxb.2014.02.005
  • Received Date: 09 Jul 2012
  • Rev Recd Date: 01 Nov 2012
  • Using first-principles which base on density functional theory, systematacially research on the electronic structure and lattice dynamics of ternary intermetallic compounds CaAlSi under high pressure was conducted.The ternary intermetallic compounds CaAlSi has six angles honeycomb structure similar with MgB2, except that Ca atom replaces the position of Mg atom, Al atom and Si atom occupy the position of B atom disorderly.According to calculations on energy band and three-dimensional Fermi surface, we discover that energy band experiences electron topological changes nearby CaAlSi fermi surface under pressure.The pressure can lead to electronic topology structure phase change.The lattice dynamics of the CaAlSi are studied under pressure.The investigation shows that optical branchs soften along the A-L-H line and phonon modes harden under pressure.It indicates that the structure of the intermetallic compound is unstable under pressure, and a new structure may be found in the case of increasing pressue.

     

  • loading
  • [1]
    Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at 39 K in magnesium diboride[J]. Nature, 2001, 410(6824): 63-64. doi: 10.1038/35065039
    [2]
    Flleischer R, Dimiduk D, Lipsitt H. Intermetallic compounds for strong high temperature materials: Status and potential[J]. Ann Rev Mater Sci, 1989, 19(1): 231-263. doi: 10.1146/annurev.ms.19.080189.001311
    [3]
    Buschow K. Intermetallic compounds of rare-earth and 3d transition metals[J]. Reports on Progress in Physics, 1977, 40(10): 1179-1256. doi: 10.1088/0034-4885/40/10/002
    [4]
    张永刚.金属间化合物结构材料[M].长沙: 国防科技出版社, 2002.

    Zhang Y G. Intermetallic Structural Materials[M]. Changsha: The National Defense Science and Technology Press, 2002. (in Chinese)
    [5]
    师昌绪.高技术新材料的现状与展望[J].机械工程材料, 1994, 18(1): 3-6. http://www.cnki.com.cn/article/cjfdtotal-gxgc401.002.htm

    Shi C X. High technology of the new materials situation and expectation[J]. Mech Eng Mater, 1994, 18(1): 3-6. (in Chinese) http://www.cnki.com.cn/article/cjfdtotal-gxgc401.002.htm
    [6]
    Sanfilippo S, Elsinger M, Núez-Regueiro M, et al. Superconducting high pressure CaSi2 phase with Tc up to 14 K[J]. Phys Rev B, 2000, 61: R3800-R3803. doi: 10.1103/PhysRevB.61.R3800
    [7]
    Imai M, Nishida K, Kimura T, et al. Superconductivity of Ca(Al0.5, Si0.5)2, a ternary silicide with the AlB2-type structure[J]. Appl Phys Lett, 2002, 80(6): 1019-1021. doi: 10.1063/1.1448857
    [8]
    Weller T E, Ellerby M, Saxena S S, et al. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca[J]. Nature Phys, 2005, 1(1): 39-41. doi: 10.1038/nphys0010
    [9]
    Zhang J Y, Zhang L J, Cui T, et al. Phonon and elastic instabilities in rocksalt alkali hydrides under pressure: First-principles study[J]. Phys Rev B, 2007, 75: 104115. doi: 10.1103/PhysRevB.75.104115
    [10]
    Xie Y, John S T, Cui T, et al. Electronic and phonon instabilities in face-centered-cubic alkali metals under pressure studied usingab initio calculations[J]. Phys Rev B, 2007, 75: 064102. doi: 10.1103/PhysRevB.75.064102
    [11]
    Zhang L J, Wang Y C, Zhang X X, et al. High-pressure phase transitions of solid HF, HCl, and HBr: An ab initio evolutionary study[J]. Phys Rev B, 2010, 82: 014108. doi: 10.1103/PhysRevB.82.014108
    [12]
    Ma Y M, Tse J S, Klug D D. First-principles study of the mechanisms for the pressure-induced phase transitions in zinc-blende CuBr and CuI[J]. Phys Rev B 2004, 69: 064102.
    [13]
    Zhang L J, Xie Y, Cui T, et al. Pressure-induced enhancement of electron-phonon coupling in superconducting CaC6 from first principles[J]. Phys Rev B 2006, 74: 184519.
    [14]
    Li Y, Zhang L J, Cui T, et al. Phonon instabilities in rocksalt AgCl and AgBr under pressure studied within density functional theory[J]. Phys Rev B 2006, 74: 054102.
    [15]
    Yin M T, Cohen M L. Theory of static structural properties, crystal stability, and phase transformations: Application to Si and Ge[J]. Phys Rev B, 1982, 26: 5668-5687. doi: 10.1103/PhysRevB.26.5668
    [16]
    Kunc K, Martin R M. Ab initio force constants of GaAs: A new approach to calculation of phonons and dielectric properties[J]. Phys Rev Lett, 1982, 48(6): 406-409. doi: 10.1103/PhysRevLett.48.406
    [17]
    Frank W, Elsässer C, Fähnle M. Ab initio force-constant method for phonon dispersions in alkali metals[J]. Phys Rev Lett, 1995, 74(10): 1791-1794. doi: 10.1103/PhysRevLett.74.1791
    [18]
    Savrasov S Y. Linear-response theory and lattice dynamics: A muffin-tin-orbital approach[J]. Phys Rev B, 1996, 54(23): 16470-16486. doi: 10.1103/PhysRevB.54.16470
    [19]
    Giannozzi P, de Gironcoli S, Pavone P, et al. Ab initio calculation of phonon dispersions in semiconductors[J]. Phys Rev B, 1991, 43(9): 7231-7242. doi: 10.1103/PhysRevB.43.7231
    [20]
    Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys Rev, 1964, 136(3B): B864-B871. doi: 10.1103/PhysRev.136.B864
    [21]
    Baroni S, Giannozzi P, Testa A. Green's-function approach to linear response in solids[J]. Phys Rev Lett, 1987, 58(18): 1861-1864. doi: 10.1103/PhysRevLett.58.1861
    [22]
    杨宏顺, 余旻, 李世燕, 等.新型超导体MgB2的热电势和电阻率研究[J].物理学报, 2001, 50(6): 1197-1200. http://d.wanfangdata.com.cn/Periodical_wlxb200106037.aspx

    Yang H S, Yu M, Li S Y, et al. The study of thermoelectric potential and resistivity on the new superconductor MgB2[J]. Acta Physica Sinica, 2001, 50(6): 1197-1200. (in Chinese) http://d.wanfangdata.com.cn/Periodical_wlxb200106037.aspx
    [23]
    Imai M, Sato A, Aoyagi T, et al. Superconductivity in the AlB2-type ternary rare-earth silicide YbGa1.1Si0.9[J]. J Am Chem Soc, 2008, 130(10): 2886-2887. doi: 10.1021/ja077669r
    [24]
    Li Z Q, Tse J S. Phonon anomaly in high-pressure Zn[J]. Phys Rev Lett, 2000, 85(24): 5130-5133. doi: 10.1103/PhysRevLett.85.5130
    [25]
    Tamegai T, Uozato K, Kasahara S, et al. Comparative study of anisotropic superconductivity in CaAlSi and CaGaSi[J]. Physica C: Superconductivity, 2005, 426-431: 208-212. doi: 10.1016/j.physc.2005.01.020
    [26]
    马荣, 黄桂琴, 刘楣.三元硅化物CaAlSi的结构和超导电性[J].物理学报, 2007, 56(8): 4960-4964. http://d.wanfangdata.com.cn/Periodical/wlxb200708098

    Ma R, Huang G Q, Liu M. Structure and supeiconductivity of three ternary silicide CaAlSi[J]. Acta Physica Sinica, 2007, 56(8): 4960-4964. (in Chinese) http://d.wanfangdata.com.cn/Periodical/wlxb200708098
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(7429) PDF downloads(276) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return