Volume 28 Issue 2
Apr 2015
Turn off MathJax
Article Contents
SUN Zhan-Feng, HE Hong-Liang, LI Ping, LI Qing-Zhong. Experimental Study on the Problem of Failure Wave in AD95 Ceramics[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 129-136. doi: 10.11858/gywlxb.2014.02.001
Citation: SUN Zhan-Feng, HE Hong-Liang, LI Ping, LI Qing-Zhong. Experimental Study on the Problem of Failure Wave in AD95 Ceramics[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 129-136. doi: 10.11858/gywlxb.2014.02.001

Experimental Study on the Problem of Failure Wave in AD95 Ceramics

doi: 10.11858/gywlxb.2014.02.001
  • Received Date: 15 May 2013
  • Rev Recd Date: 22 Jul 2013
  • The free surface velocity profile of AD95 ceramic target was measured through laser interferometry under one-dimensional plane strain shock compression.Whether failure wave happened and its relationship with material property were discussed by the analysis of velocity profile characteristic.In an impact stress range from 4.4 to 7.3 GPa (σHEL is about 5.5 GPa), the free surface velocity profile has no appearance of reload signal, which means that there is no appearance of seriously damaged and fragmentized interface as that observed in glass and rock, like a failure wave.The analysis about the free surface velocity profile indicates that the calculated characterizing time difference is regularly less than the experimental value, and the rising foreland has a dispersive property even though the loading stress is less than σHEL.These findings demonstrate that, to some extent, AD95 ceramics might have produced a certain weak compressive damage at the low-stress region.The fracture toughness is a significant ingredient that affects the failure wave phenomena.Materials with relatively lower fracture toughness are prone to form microcracks extension, connection and finally lead to the serious breakage and shatter into pieces, which means the appearance of failure wave.

     

  • loading
  • [1]
    Rasorenov S V, Kanel G I, Fortov V E, et al. The fracture of glass under high-pressure impulsive loading[J]. High Press Res, 1991, 6: 225-232. doi: 10.1080/08957959108202508
    [2]
    Kanel G I, Rasorenov S V, Fortov V E. The failure waves and spallations in homogeneous brittle materials[C]//Schmidt S C, Dick R D, Forbes J W, et al. Shock Compression of Condensed Matter-1991. Amsterdam: ElsevierScience Publishers B V, 1992: 451-454.
    [3]
    Brar N S, Bless S J, Rosenberg Z. Impact-induced failure waves in glass bars and plates[J]. Appl Phys Lett, 1991, 59: 3396-3398. doi: 10.1063/1.105686
    [4]
    Brar N S, Rosenberg Z, Bless S J. Spall strength and failure waves in glass[J]. J Phys Ⅳ, 1991, 1(C3): 639-642. http://www.researchgate.net/publication/45847522_spall_strength_and_failure_waves_in_glass
    [5]
    贺红亮.冲击波极端条件下脆性介质的力学响应特性及其细观结构破坏特征[D].绵阳: 中国工程物理研究院, 1997.

    He H L. Dynamic response and microstructure damage of brittle materials under shock wave compression[D]. Mianyang: China Academy of Engineering Physics, 1997. (in Chinese)
    [6]
    章冠人.冲击压缩脆性材料中破碎波的几个问题[J].高压物理学报, 1998, 12(2): 81-86. http://www.cqvip.com/QK/96553X/199802/3079688.html

    Zhang G R. Some problems of fracture waves in brittle materials under shock loading[J]. Chinese Journal of High Pressure Physics, 1998, 12(2): 81-86. (in Chinese) http://www.cqvip.com/QK/96553X/199802/3079688.html
    [7]
    刘占芳, 常敬臻, 姚国文, 等.冲击压缩下氧化铝陶瓷中破坏阵面的传播[J].力学学报, 2006, 38(5): 626-632. http://www.cnki.com.cn/Article/CJFDTotal-LXXB200605008.htm

    Liu Z F, Chang J Z, Yao G W, et al. Propagation of failure front in shock-loaded polycrystalline alumina[J]. Appl Math Mech, 2006, 38(5): 626-632. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-LXXB200605008.htm
    [8]
    陈登平, 贺红亮, 黎明发, 等.冲击压缩下非均匀脆性固体的弛豫破坏波研究[J].物理学报, 2007, 56(1): 423-428. http://d.wanfangdata.com.cn/Periodical/wlxb200701069

    Chen D P, He H L, Li M F, et al. A delayed failure of inhomogenous brittle material under shock wave compression[J]. Acta Phys Sin, 2007, 56(1): 423-428. (in Chinese) http://d.wanfangdata.com.cn/Periodical/wlxb200701069
    [9]
    Chen D P, He H L, Jing F Q. Delayed failure of the shock compressed inhomogeneous brittle material[J]. J Appl Phys, 2007, 102: 033519. doi: 10.1063/1.2767228
    [10]
    Rosenberg Z, Yeshurun Y. Determination of the dynamic response of AD-85 alumina with in-material manganin gauges[J]. J Appl Phys, 1985, 58(8): 3077-3080. doi: 10.1063/1.335807
    [11]
    Grady D E. Shock-wave compression of brittle solids[J]. Mech Mater, 1998, 29: 181-203. doi: 10.1016/S0167-6636(98)00015-5
    [12]
    Bourne N K, Gray G T Ⅲ. On the failure of boron carbide under shock[C]//Shock Compression of Condensed Matter Meeting. Atlanta, Georgia, 2001.
    [13]
    Pickup I M, Barker A K. Deviatoric strength of silicon carbide subject to shock[J]. AIP Conf Proc, 2000, 505: 573-576. doi: 10.1063/1.1303539
    [14]
    Pickup I M, Bourne N K. The failure aluminum nitride under shock[C]//Shock Compression of Condensed Matter Meeting. Atlanta, Georgia, 2001.
    [15]
    Millett J C F, Bourne N K, Pickup I M. The behaviour of a SiO2-Li2O glass ceramic during one-dimensional shock loading[J]. J Appl Phys, 2005, 38(18): 3530-3536. http://adsabs.harvard.edu/abs/2005JPhD...38.3530M
    [16]
    Grady D E. Dynamic failure of brittle solids, SAND-94-0777C[R]. Albuquerque, US: Sandia National Labs, 1994.
    [17]
    Grady D E, Moody R L. Shock compression profiles in ceramics, SAND-96-0551[R]. Albuquerque, US: Sandia National Labs, 1996.
    [18]
    Grady D E. Shock-wave properties of brittle solids[J]. AIP Conf Proc, 1996, 370: 9-20. doi: 10.1063/1.50579
    [19]
    Murray N H, Millett J C F, Proud W G, et al. Issues surrounding lateral stress measurements in alumina ceramics[J]. AIP Conf Proc, 2000, 505: 581-584. doi: 10.1063/1.1303541
    [20]
    Field J E, Tsembelis K, Brar N S, et al. Issues related to lateral stress measurements in alumina ceramics[J]. AIP Conf Proc, 2004, 706: 1151-1154. doi: 10.1063/1.1780442
    [21]
    孙占峰, 贺红亮, 李平, 等. AD95陶瓷的层裂强度及冲击压缩损伤机理研究[J].物理学报, 2012, 61(9): 096201. http://d.wanfangdata.com.cn/Periodical/wlxb201209054

    Sun Z F, He H L, Li P, et al. The spall strength and shock compressive damage of AD95 ceramics[J]. Acta Phys Sin, 2012, 61(9): 096201. (in Chinese) http://d.wanfangdata.com.cn/Periodical/wlxb201209054
    [22]
    Sun Z F, Xu H, Li P, et al. The response of AD95 alumina to low pressure impact[J]. Int J Nonlin Sci Numer Simulat, 2010, 11(sup): 0247-0251. http://www.degruyter.com/view/j/ijnsns.2010.11.s1/ijnsns.2010.11.s1.247/ijnsns.2010.11.s1.247.xml?format=INT
    [23]
    孙占峰.氧化铝陶瓷冲击压缩损伤及残余强度实验研究[D].绵阳: 中国工程物理研究院, 2012.

    Sun Z F. Experimental study on shock compressive damage and residual strength of alumina ceramics[D]. Mianyang: China Academy of Engineering Physics, 2012. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(7237) PDF downloads(302) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return