Volume 28 Issue 1
Mar 2015
Turn off MathJax
Article Contents
WANG Peng-Fei, XU Song-Lin, HU Shi-Sheng. A Constitutive Relation of Aluminum Foam Coupled with Temperature and Strain Rate[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 23-28. doi: 10.11858/gywlxb.2014.01.004
Citation: WANG Peng-Fei, XU Song-Lin, HU Shi-Sheng. A Constitutive Relation of Aluminum Foam Coupled with Temperature and Strain Rate[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 23-28. doi: 10.11858/gywlxb.2014.01.004

A Constitutive Relation of Aluminum Foam Coupled with Temperature and Strain Rate

doi: 10.11858/gywlxb.2014.01.004
  • Received Date: 25 Oct 2012
  • Rev Recd Date: 14 Jan 2013
  • The results of split Hopkinson pressure bar (SHPB) and quasi-static compression tests for aluminum foam at different strain rates and temperatures are used to explore its constitutive relation.It is revealed that there is a coupling of the temperature effect and the strain rate effect, namely the higher the temperature is, the more significant the strain rate effect of the aluminum foam is.In the framework of Sherwood and Frost constitutive relation, with appropriate correction of the strain rate sensitivity coefficient considering the coupling effects between temperature and strain rate, a constitutive equation of aluminum foam is proposed.The results show that the revised constitutive equation can fit the experimental results well in the density, temperature and strain rate ranges considered.

     

  • loading
  • [1]
    Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. Cambridge, UK: Cambridge University Press, 1997: 175-231.
    [2]
    Evan A G, Hutchinson J W, Ashby M F. Multifunctionality of cellular metal systems[J]. Prog Mater Sci, 1998, 43(3): 171-221. doi: 10.1016/S0079-6425(98)00004-8
    [3]
    Wadley H N. Multifunctional periodic cellular metals[J]. Philos Trans A Math Phys Eng Sci, 2006, 364: 31-68. http://europepmc.org/abstract/MED/18272452
    [4]
    Bigg D M. Predicting the shock mitigating properties of thermoplastic foams[J]. Polym Eng Sci, 1981, 21(9): 548-556. doi: 10.1002/pen.760210907
    [5]
    Miltz J, Ramon O, Mizrahi S. Mechanical behavior of closed cell plastic foams used as cushioning materials[J]. J Appl Polym Sci, 1989, 38(2): 281-290. doi: 10.1002/app.1989.070380209
    [6]
    Ramon O, Mizrahi S, Miltz J. Mechanical properties and behavior of open cell foams used as cushioning materials[J]. Polym Eng Sci, 1990, 30(4): 197-201. doi: 10.1002/pen.760300402
    [7]
    Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the Seventh International Symposium on Ballistics. Hague, Netherlands, 1983: 541-547.
    [8]
    Rusch K C. Load-compression behavior of flexible foams[J]. J Appl Polym Sci, 1969, 13(11): 2297-2311. doi: 10.1002/app.1969.070131106
    [9]
    Schwaber D M, Meinecke E A. Energy absorption in polymeric foams. Ⅱ. Prediction of impact behavior from instron data for foams with rate-dependent modulus[J]. J Appl Polym Sci, 1971, 15(10): 2381-2393. doi: 10.1002/app.1971.070151006
    [10]
    Nagy A, Ko W L, Lindholm U S. Mechanical behavior of foamed materials under dynamic compression[J]. J Cell Plast, 1974, 10(3): 127-134. http://www.researchgate.net/publication/235096778_Mechanical_Behavior_of_Foamed_Materials_Under_Dynamic_Compression
    [11]
    Sherwood J A, Frost C C. Constitutive modeling and simulation of energy absorbing polyurethane foam under impact loading[J]. Polym Eng Sci, 1992, 32(16): 1138-1146. doi: 10.1002/pen.760321611/citedby
    [12]
    胡时胜, 刘剑飞, 王梧.硬质聚氨酯泡沫塑料本构关系的研究[J].力学学报, 1998, 30(2): 151-156. http://www.cqvip.com/QK/91029X/19982/2952337.html

    Hu S S, Liu J F, Wang W. Study of the constitutive relationship of rigid polyurethane foam[J]. Acta Mechanica Sinica, 1998, 30(2): 151-156. (in Chinese) http://www.cqvip.com/QK/91029X/19982/2952337.html
    [13]
    Liu Q L, Subhash G, Gao X L. A parametric study on crushability of open-cell structural polymeric foams[J]. J Porous Mater, 2005, 12(3): 233-248. doi: 10.1007/s10934-005-1652-1
    [14]
    Chou C C, Zhao Y, Lim G G, et al. A constitutive model for polyurethane foams with strain-rate and temperature effects[C]//International Congress & Exposition Technical Papers. Michigan, USA, 1998: 743-754.
    [15]
    Wang Z H, Jing L, Zhao L M. Elasto-plastic constitutive model of aluminum alloy foam subjected to impact loading[J]. Trans Nonferrous Met Soc China, 2011, 21(3): 449-454. doi: 10.1016/S1003-6326(11)60735-8
    [16]
    王鹏飞, 徐松林, 胡时胜.不同温度下泡沫铝压缩行为与变形机制探讨[J].振动与冲击, 2013, 32(5): 16-19. http://www.cqvip.com/QK/95775X/201305/45244844.html

    Wang P F, Xu S L, Hu S S. Compressive behavior and deformation mechanism of aluminum foam under different temperature[J]. Journal of Vibration and Shock, 2013, 32(5): 16-19. (in Chinese) http://www.cqvip.com/QK/95775X/201305/45244844.html
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(8989) PDF downloads(345) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return