Volume 27 Issue 6
Mar 2015
Turn off MathJax
Article Contents
QIAO Liang, ZHANG Xian-Feng, HE Yong, SHI An-Shun, ZHANG Jiang, . Meso-Scale Numerical Simulation of the Shock Compression of Particle Metal Materials[J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 863-871. doi: 10.11858/gywlxb.2013.06.011
Citation: QIAO Liang, ZHANG Xian-Feng, HE Yong, SHI An-Shun, ZHANG Jiang, . Meso-Scale Numerical Simulation of the Shock Compression of Particle Metal Materials[J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 863-871. doi: 10.11858/gywlxb.2013.06.011

Meso-Scale Numerical Simulation of the Shock Compression of Particle Metal Materials

doi: 10.11858/gywlxb.2013.06.011
  • Received Date: 06 Mar 2012
  • Rev Recd Date: 30 May 2012
  • Publish Date: 15 Dec 2013
  • Meso-scale characteristics of particle metal materials (PMM) play an important role in determining its macro-scale mechanical property. In order to investigate relationship between meso-scale characters (particle size, distribution, morphology, porosity) and macro-scale mechanical property, a FEM meso-scale model which can follow the distribution of real structure was built with reasonable simplification. By exploiting AUTODYN FEM software, shock compression process of PMM was simulated and Hugoniot parameters of typical PMM were extracted. Based on the simulated results, conclusion was made on how the meso-scale characteristics (e.g. theoretical mass density, particle size) make impact on the macro-scale shock compression mechanical property. Deformation morphologies and temperature rise during shock compression were also acquired by simulations. It is shown that the simulated result shows a good agreement with the experiment and the meso-scale characteristics of PMM play an important role on its macro-scale property.

     

  • loading
  • Zhang X F, Zhao X N. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731-739. (in Chinese)
    张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731-739.
    Thadhani N N, Graham R A, Royal T, et al. Shock-induced chemical reactions in titanium-silicon powder mixtures of different morphologies: Time-resolved pressure measurements and materials analysis [J]. J Appl Phys, 1997, 82(3): 1113-1128.
    Boslough M B. A thermochemical model for shock-induced reactions (heat detonations) in solids [J]. J Chem Phys, 1990, 92(3): 1839-1848.
    Eakins D E, Thadhani N N. Shock compression of reactive powder mixtures [J]. Int Mater Rev, 2009, 54(4): 181-213.
    Benson D J. An analysis by direct numerical simulation of the effects of particle morphology on the shock compaction of copper powder [J]. Model Simulat Mater Sci Eng, 1994, 2(3): 535-550.
    Benson D J, Conley P. Eulerian finite-element simulations of experimentally acquired HMX microstructures [J]. Model Simulat Mater Sci Eng, 1999, 7(3): 333-354.
    Benson D J. The calculation of the shock velocity-particle velocity relationship for a copper powder by direct numerical simulation [J]. Wave Motion, 1995, 21(1): 85-99.
    Benson D J, Nellis W J. Dynamic compaction of copper powder: Computation and experiment [J]. Appl Phys Lett, 1994, 65(4): 418-420.
    Austin R A, McDowell D L, Benson D J. Numerical simulation of shock wave propagation in spatially-resolved particle systems [J]. Model Simulat Mater Sci Eng, 2006, 14(4): 537-561.
    Austin R A. Numerical simulation of the shock compression of microscale reactive particle systems [D]. Atlanta: Georgia Institute of Technology, 2005.
    Austin R A. Modeling shock wave propagation in discrete Ni/Al powder mixture [D]. Atlanta: Georgia Institute of Technology, 2010.
    Eakins D E, Thadhani N N. Mesoscale simulation of the configuration-dependent shock-compression response of Ni+ Al powder mixtures [J]. Acta Mater, 2008, 56(7): 1496-1510.
    Eakins D E, Thadhani N N. Discrete particle simulation of shock wave propagation in a binary Ni+Al powder mixture [J]. J Appl Phys, 2007, 101(4): 043508.
    Eakins D E. Role of heterogeneity in the chemical and mechanical shock-response of nickel and aluminum powder mixtures [D]. Atlanta: Georgia Institute of Technology, 2007.
    Fredenburg D A, Vogler T J, Thadhani N N. Meso-scale simulation of the shock compression response of equiaxed and needle morphology 6061 aluminum powders [C]//Elert M L, Furnish M D, Anderson W W, et al. Shock Compression of Condensed Matter-2009. New York: AIP, 2010: 1341-1344.
    Zhou D, Huang F L, Yao H S. Meso-damage experimental studies on the PBX [J]. Chinese Journal of Explosives Propellants, 2007, 30(3): 16-18. (in Chinese)
    周栋, 黄风雷, 姚惠生. PBX炸药细观损伤的实验研究 [J]. 火炸药学报, 2007, 30(3): 16-18.
    Zhou D, Huang F L, Yao H S. Study on the visco-elastic constitutive model of PBX [J]. Transactions of Beijing Institute of Technology, 2007, 27(11): 945-947. (in Chinese)
    周栋, 黄风雷, 姚惠生. PBX炸药粘弹性损伤本构关系研究 [J]. 北京理工大学学报, 2007, 27(11): 945-947.
    Chen P W, Ding Y S, Chen L. Progress in the study of damage and mechanical properties of energetic materials [J]. Advances in Mechanics, 2002, 32(2): 212-222. (in Chinese)
    陈鹏万, 丁雁生, 陈力. 含能材料装药的损伤及力学性能研究进展 [J]. 力学进展, 2002, 32(2): 212-222.
    Dai K D, Chen P W. Numerical simulation of the shock compaction of W/Cu powders [J]. Mater Sci Forum, 2011, 673: 113-118.
    Granqvist C G, Buhrman R A. Ultrafine metal particles [J]. J Appl Phys, 1976, 47(5): 2200-2219.
    Marsh S P. LASL Shock Hugoniot Data [Z]. Berkeley, CA: University of California Press, 1980.
    Williamson R L. Parametric studies of dynamic powder consolidation using a particle-level numerical model [J]. J Appl Phys, 1990, 68(3): 1287-1296.
    Zhang X F, Zhao X N, Qiao L. Theory analysis on shock-induced chemical reaction of reactive metal [J]. Explosive and Shock Waves, 2010, 30(2): 145-151. (in Chinese)
    张先锋, 赵晓宁, 乔良. 反应金属冲击反应过程的理论分析 [J].爆炸与冲击, 2010, 30(2): 145-151.
    Zhang X F, Qiao L, Shi A S, et al. A cold energy mixture theory for the equation of state in solid and porous metal mixtures [J]. J Appl Phys, 2011, 110(1): 013506.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(6266) PDF downloads(392) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return