Volume 27 Issue 3
Mar 2015
Turn off MathJax
Article Contents
YANG Rui, WANG Jin-Xiang, ZHOU Nan, PENG Chu-Cai, XIE Jun. Numerical Simulation of Microscopic Dynamic Behavior in the Copper under Explosively Dynamic Loading[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 461-467. doi: 10.11858/gywlxb.2013.03.022
Citation: YANG Rui, WANG Jin-Xiang, ZHOU Nan, PENG Chu-Cai, XIE Jun. Numerical Simulation of Microscopic Dynamic Behavior in the Copper under Explosively Dynamic Loading[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 461-467. doi: 10.11858/gywlxb.2013.03.022

Numerical Simulation of Microscopic Dynamic Behavior in the Copper under Explosively Dynamic Loading

doi: 10.11858/gywlxb.2013.03.022
  • Received Date: 14 Sep 2011
  • Rev Recd Date: 08 Jan 2012
  • Publish Date: 15 Jun 2013
  • Voronoi method was adopted to establish the micro-geometry model of polycrystalline copper which can reflect the irregularities of grain geometric shape and grain boundaries. The Tie-Break model was used to reflect the binding characteristics of grain boundary. Then the grains deformation and thermal deposition behavior under explosive dynamic loading were studied from the microscopic view recur to LS-DYNA nonlinear finite element program. Finally, the possibility of grain refining was analyzed by high pressure melting point theory and grain growth theory, and the analysis was proved qualitatively by experimental results. The results show that it is feasible to research grain and grain boundary deformation mechanisms as well as the heat deposition for the shock compressed polycrystalline copper by the numerical simulation method built in this work. Stress concentration is easy to form on the grain boundaries; plastic deformation and temperature rise on the grain boundaries are greater than those of the grain interior. The temperature rise caused by the macro-adiabatic compression and the micro-plastic deformation does not cause grain growth.

     

  • loading
  • Li J, Weng G J. A secant-viscosity composite model for the strain-rate sensitivity of nanocrystalline materials [J]. Int J Plastic, 2007, 23(12): 2115-2133.
    Xiao G H, Tao N R, Lu K. Effects of strain, strain rate and temperature on deformation twinning in a Cu-Zn alloy [J]. Scripta Mater, 2008, 59(9): 975-978.
    Wang H T, Yang W. Mechanical behavior of nanocrystalline metals [J]. Advances in Mechanics, 2004, 34(3): 314-326. (in Chinese)
    王宏涛, 杨卫. 纳米晶金属的力学行为 [J]. 力学进展, 2004, 34(3): 314-326.
    Benkasse S, Capolungo L. Mechanical properties and multi-scale modeling of nanocrystalline materials [J]. Acta Mater, 2007(55): 3563-3572.
    Wang Y M, Wang K, Pan D, et al. Microsample tensile testing of nanocrystallinne cooper [J]. Scripta Mater, 2003, 48(12): 1581-1586.
    Zhang L D. Nanomaterials and nanotechnology in China: Current status of applicationand opportunities for commercialization [J]. Materials Review, 2001, 15(7): 2-5. (in Chinese)
    张立德. 我国纳米材料技术应用的现状和产业化的机遇 [J]. 材料导报, 2001, 15(7): 2-5.
    Cai B, Kong Q P, Lu L, et al. Low temperature creep of nanocrystalline pure copper [J]. Mater Sci Eng A, 2000, 286(1): 188-192.
    Guduru R K, Murty K L, Youssef K M, et al. Mechanical behavior of nanocrystalline copper [J]. Mater Sci Eng A, 2007, 463(1-2): 14-21.
    Zheng C, Zhang Y W. Atomistic simulations of mechanical deformation of high-angle and low-angle nanocrystalline copper at room temperature [J]. Mater Sci Eng A, 2007, 423(1-2): 97-101.
    Wang J X, Zhou N, Li B M, et al. Fabrication of nanocrystalline copper by explosive loading and its dynamic mechanics properties [J]. Combustion, Explosion and Shock Waves, 2011, 47(3): 369-373.
    Wang J X, Zhou N. Study on the grain size distribution rule and influence factors of nanocrystalline copper fabricated under explosive loading [J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 501-507. (in Chinese)
    王金相, 周楠. 爆炸载荷下纳米晶铜晶粒度分布及影响因素研究 [J]. 高压物理学报, 2011, 25(6): 501-507.
    Kang J X, Wang Z H, Zhao L M. Studay on the quasi-static mechanical proerties of cellular metal using voronoi tessellation [J]. Engineering Mechanics, 2011, 28(7): 203-209. (in Chinese)
    康锦霞, 王志华, 赵隆茂. 采用Voronoi模型研究多孔金属材料准静态力学特性 [J]. 工程力学, 2011, 28(7): 203-209.
    Zhang Q M, Liu Y, Huang F L. Dynamic Behavior of Materials [M]. Beijing: National Defense Industry Press, 2006: 165-170. (in Chinese)
    张庆明, 刘彦, 黄风雷. 材料的动力学行为 [M]. 北京: 国防工业出版社, 2006: 165-170.
    Wang H T, Yang W, Ngan A H W. Enhanced diffusivity by triple junction networks [J]. Scripta Mater, 2004, 52(1): 69-73.
    Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Eng Fract Mech, 1985, 21(1): 31-48.
    Tang W H, Zhang R Q. Introduction to Theory and Computation of Equations of State [M]. 2nd ed. Beijing: Higher Education Press, 2008: 134-136. (in Chinese)
    汤文辉, 张若棋. 物态方程理论及计算概论 [M]. 第2版. 北京: 高等教育出版社, 2008: 134-136.
    Andrievski R A. Review stability of nanostructured materials [J]. J Mater Sci, 2003, 38(7): 1367-1375.
    Murty B S, Datta M K, Pabi S K. Structure and thermal stability of nanocrystalline materials [J]. Sadhana, 2003, 28(1-2): 23-45.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(6679) PDF downloads(336) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return