Volume 27 Issue 2
Mar 2015
Turn off MathJax
Article Contents
HONG Shi-Ming. Time Dependence of High Pressure Induced Phase Transitions[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 162-167. doi: 10.11858/gywlxb.2013.02.002
Citation: HONG Shi-Ming. Time Dependence of High Pressure Induced Phase Transitions[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 162-167. doi: 10.11858/gywlxb.2013.02.002

Time Dependence of High Pressure Induced Phase Transitions

doi: 10.11858/gywlxb.2013.02.002
  • Received Date: 18 Mar 2013
  • Rev Recd Date: 18 Mar 2013
  • Publish Date: 15 Apr 2013
  • For investigating kinetic behavior of pressure induced phase transitions, it is the most expected to combine high time-resolved diagnostic probes with the precise compression techniques. In fact, an indirect way in large volume press is compare characterization results of recovered samples with their experienced conditions including pressure, temperature and time. As a typical example, relationship between p-T conditions and time for diamond nucleation in C-H-O system is discussed by previous experimental data, demonstrated that extending loading time under HP/HT is propitious to form high pressure stable phase. In contrast, some meta-stable phases, such as bulk amorphous sulfur, metallic glasses and amorphous polymers etc., were obtained by rapid compression process. The results indicated that many substances can show the kinetic features of phase transition in the scale of compression rate from 1 GPa to 1 TPa/s. The kinetic phase diagrams with three dimensions (pressure, temperature and time) could be established through both of the static or rapid compression experiments.

     

  • loading
  • Bridgeman P W. The Physics of High Pressure [M]. New York: MacMillan, 1931.
    Bridgeman P W. The Nature of Thermodynamics [M]. Cambridge, MA: Harvard University Press, 1941.
    Bridgeman P W. Collected Experimental Papers(Seven volumes) [M]. Cambridge, MA: Harvard University Press, 1964.
    Cannon J F. Behavior of the elements at high pressure [J]. J Phys Chem Ref Data, 1974, 3(3): 781-824; Merrill L. Behavior of the AB-type compounds at high pressure and high temperatures [J]. J Phys Chem Ref Data, 1977, 6(4): 1205-1252; Merrill L. Behavior of the AB2 type compounds at high pressure and high temperatures [J]. J Phys Chem Ref Data, 1982, 11(4): 1005-1064.
    Bundy F P. Bassett W A, Weathers M S, et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994 [J]. Carbon, 1996, 34(2): 141-153.
    Mujica A, Rubio A, Munoz A, et al. High-pressure phases of group-Ⅳ, Ⅲ-Ⅴ, and Ⅱ-Ⅵ compounds [J]. Rev Mod Phys, 2003, 75: 864-912.
    Degtyareva O, Gregoryanz E, Somayazulu M, et al. Novel chain structures in group Ⅵ elements [J]. Nature Mat, 2005, 4(2): 152-155.
    Mao W L, Mao H K, et al. Bonding changes in compressed superhard graphite [J]. Science, 2003, 302(5644): 425-427.
    Ma Y M, Eremets M, Oganov A R, et al. Transparent dense sodium [J]. Nature, 2009, 458: 182-185.
    Mao H K, Hemley R J. The high-pressure dimension in earth and planetary science [J]. PNAS, 2007, 104(22): 9114-9115.
    Wang W H, Utsumi W, Wang X L. Pressure-temperature-time-transition diagram in a strong metallic supercooled liquid [J]. Europhys Lett, 2005, 71(4): 611-617.
    Berman R, Simon F. On the graphite-diamond equilibrium [J]. Z Elektrochem, 1955, 59: 333-338; Berman R. Physical Properties of Diamond [M]. Oxford University Press, 1965: 371; The Properties of Diamond [M]. London: Academic Press, 1979: 4.
    Bundy F P, Hall H T, Strong H M, et al. Man made diamond [J]. Nature, 1955, 176: 51-55.
    Bovenkerk H P, Bundy H P, Hall H T, et al. The preparation of diamond [J]. Nature, 1959, 184: 1094-1098.
    Bundy F P. Direct conversion of graphite to diamond in static pressure apparatus [J]. J Chem Phys, 1963, 38(3): 631-635.
    Akaishi M, Kanda H, Yamaoka S. Synthesis of diamond from graphite-carbonate system under very high temperature and pressure [J]. J Cryst Growth, 1990, 104(2): 578-581.
    Akaishi M, Kanda H, Yamaoka S. High pressure synthesis of diamond in the system of graphite-sulfate and graphite-hydroxide [J]. Jpn J Appl Phys, 1990, 29(7): L1172-L1174.
    Arima M, Nakayama K, Akaishi M, et al. Crystallization of diamond from a silicate melt of kimberlite compositon in high pressure and high temperature experiments [J]. Geology, 1993, 21(11): 968-970.
    Yamaoka S, Akaishi M, Kanda H, et al. Crystal growth of diamond in the system of carbon and water under very high pressure and temperature [J]. J Crystal Growth, 1992, 125(12): 375-377.
    Hong S M, Akaishi M, Yamaoka S. Nucleation of diamond in the system of carbon and water under very high pressure and temperature [J]. J Crystal Growth, 1999, 200(12): 326-328.
    Yamaoka S, Shaji Kumar M D, Akaishi M, et al. Reaction between carbon and water under diamond-stable high pressure and high temperature conditions [J]. Diamond Related Materials, 2000, 9(8): 1480-1486.
    Yamaoka S, Shaji Kumar M D, Kanda H, et al. Thermal decomposition of glucose and diamond formation under diamond-stable high pressure high temperature conditions [J]. Diamond Related Mater, 2002, 11(1): 118-124.
    Wang Z X. Introduction of Thermodynamics [M]. Beijing: People's Education Press, 1964. (in Chinese)
    王竹溪. 热力学简程 [M]. 北京: 人民教育出版社, 1964.
    Feng D, Shi C X, Liu Z G. Introduction to Materials Science [M]. Beijing: Chemical Engineering Press, 2002: 555-562. (in Chinese)
    冯端, 师昌绪, 刘治国. 材料科学导论 [M]. 北京: 化学工业出版社, 2002: 555-562.
    Yu P, Wang W H, Wang R J, et al. Understanding exceptional thermodynamic and kinetic stability of amorphous sulfur obtained by rapid compression [J]. Appl Phys Lett, 2009, 94(1): 011910(1)-011910(3).
    Hong S M, Chen L Y, Liu X R, et al. High pressure jump apparatus for measuring Grneisen parameter of NaCl and studying metastable amorphous phase of poly (ethylene terephthalate) [J]. Rev Sci Instrum, 2005, 76(5): 053905(1)-053905(6).
    Jia R, Shao C G, Su L, et al. Rapid compression induced solidification of bulk amorphous sulfur [J]. J Phys D: Appl Phys, 2007, 40(12): 3763-3766.
    Hu Y, Su L, Liu X R, et al. Preparation of high-density nanocrystalline bulk selenium by rapid compressing of melt [J]. Chin Phys Lett, 2010, 27(3): 038101(1)-038101(4).
    Liu X R, Hong S M, L S J, et al. Preparation of La68Al10Cu20Co2 bulk metallic glass by rapid compression [J]. Appl Phys Lett, 2007, 91(8): 081910(1)-081910(3).
    Yuan C S, Liu X R, Shen R, et al. Preparation of thermo-stable bulk metallic glass of Nd60Cu20Ni10Al10 by rapid compression [J]. Chin Phys Lett, 2010, 27(9): 096202(1)-096202(4).
    Hong S M, Liu X R, Su L, et al. Rapid compression induced solidification of two amorphous phases of poly (ethylene terephthalate) [J]. J Phys D: Appl Phys, 2006, 39(16): 3684-3688.
    Yuan C S, Hong S M, Li X X, et al. Rapid compression preparation and characterization of oversized bulk amorphous polyether-ether-ketone [J]. J Phys D: Appl Phys, 2011, 44(16): 165405(1)-165405(7).
    Wang M Y, Liu X R, Zhang C R, et al. Compression-rate dependence of solidified structure from melt in isotactic polypropylene [J]. J Phys D: Appl Phys, 2013, 46(14): 145307(1)-145307(5).
    Turnbull D. Under what conditions can a glass be formed? [J]. Contem Phys, 1969, 10(5): 473-488.
    Liu X R, Hong S M. Evidence for a pressure-induced phase transition of amorphous to amorphous in two lanthanide-based bulk metallic glasses [J]. Appl Phys Lett, 2007, 90(25): 251903(1)-251903(3).
    Zhang D D, Liu X R, He Z, et al. Kinetic behaviors of phase transition of amorphous sulfur [C]//Proceeding of the 16th Conference of High Pressure Science of China. Yichang, 2012: 152. (in Chinese)
    张豆豆, 刘秀茹, 何竹, 等. 非晶硫的相变动力学行为 [C]//第十六届中国高压科学学术会议缩编文集. 宜昌, 2012: 152.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7354) PDF downloads(546) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return