Volume 26 Issue 6
Apr 2015
Turn off MathJax
Article Contents
DING Ying-Chun, LIU Hai-Jun, JIANG Meng-Heng, CHEN Min, CHEN Yong-Ming. First-Principles Investigations on Structural Transformation and Electronic Properties of BeP2N4 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 674-680. doi: 10.11858/gywlxb.2012.06.012
Citation: DING Ying-Chun, LIU Hai-Jun, JIANG Meng-Heng, CHEN Min, CHEN Yong-Ming. First-Principles Investigations on Structural Transformation and Electronic Properties of BeP2N4 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 674-680. doi: 10.11858/gywlxb.2012.06.012

First-Principles Investigations on Structural Transformation and Electronic Properties of BeP2N4 under High Pressure

doi: 10.11858/gywlxb.2012.06.012
  • Received Date: 09 Mar 2011
  • Rev Recd Date: 05 Jul 2011
  • Publish Date: 15 Dec 2012
  • Total energy of BeP2N4 as a function of unit cell volume was calculated for phenakite and spinel-type structures using the density function theory (DFT). According to the Brich-Murnaghan's equation of state, the bulk modulus B0 and B0=dB/dp for these two structures were obtained. The calculated results are all in good agreement with other theoretical data available in the literature, which indicate that BeP2N4 will transform from phenakite to spinel-type with increasing pressure. The results are in good agreement with experimental and other theoretical results. The energy gap slightly increases with pressure in the phenakite and spinel-type phases. The compression ratio of a/a0 and V/V0 were calculated. We find the the compression ratio of a/a0 and V/V0 of spinel structure BeP2N4 is the same that of diamond at lower 5 GPa. The BH, GH, BH/GH and E were also calculated at high pressure. By analyzing the changes of the total electronic density of states (TDOS) and the band gap under pressure, it is found that the energy band width and charge transfer for the two structures increase with increasing pressure. Moreover, the BeN, PN bond length is shortened and the electric charges are redistributed.

     

  • loading
  • Zerr A, Miehe G, Serghiou G, et al. Synthesis of cubic silicon nitride [J]. Nature(London), 1999, 400: 340-342.
    Jiang J Z, Kragh F, Frost D J, et al. Hardness and thermal stability of cubic silicon nitride [J]. J Phys: Condens Mater, 2001, 13: L515- L520.
    Leinenweber K, O'Keeffe M, Somayazulu M, et al. Synthesis and structure refinement of the spinel-Ge3N4 [J]. Chem Eur J, 1999, 5: 3076-3078.
    Serghiou G, Miehe G, Tschauner O, et al. Synthesis of a cubic Ge3N4 phase at high pressures and temperatures [J]. J Chem Phys, 1999, 111(10): 4659-4662.
    Scotti N, Kockelmann W, Senker J, et al. Sn3N4, a tin (Ⅳ) nitride-Syntheses and the first crystal structure determination of a binary tin-nitrogen compound [J]. Z Anorg Allg Chem, 1999, 625: 1435-1439.
    Shemkunas M P, Wolf G H, Leinenweber K, et al. Rapid synthesis of crystalline spinel tin nitride by a solid-state metathesis reaction [J]. J Am Ceram Soc, 2002, 85: 101-104.
    Zerr A, Miehe G, Riedel R. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure [ J]. Nature Matter, 2003, 2: 185-189.
    Gregoryanz E, Sanloup C, Somayazulu M, et al. Synthesis and char acterization of a binar y noble metal nitride [ J]. Nature Mater, 2004, 3: 294-297.
    Corwhurst J C, Goncharov A F, Sadigh B, et al. Synthesis and characterization of the nitrides of platinum and iridium [J]. Science, 2006, 311: 1275-1278.
    Karau F W, Seyfarth L, Oeckler O. The stuffed framework structure of SrP2N4: Challenges to synthesis and crystal structure determination [J]. Chem Eur J, 2007, 13: 6841-6852.
    Karau F, Schnick W. Hochdrucksynthese von BaSr2P6N12 und BaCa2P6N12 und strukturvergleich der reihe BaP2N4, BaCa2P6N12 und BaSr2P6N12 [J]. Z Anorg Allg Chem, 2006, 632: 231-237.
    Pucher F J, Rmer S R, Karau F W, et al. Phenakite-type BeP2N4-A possible precursor for a new hard spinel-type material [J]. Chem Eur J, 2010, 16(24): 7208-7214.
    Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys Rev Lett, 1996, 77: 3865-3868.
    Brich F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K [J]. J Geophys Res, 1978, 83: 1257-1268.
    Xiao B, Xing J D, Feng J, et al. Theoretical study on the stability and mechanical property of Cr7C3 [J]. Phys B, 2008, 403: 2273-2281.
    Feng J, Chen J C, Xiao B, et al. Stability, thermodynamic and mechanical properties of the compounds in the Ag-Sn-O system [J]. Phys B, 2009, 404: 2461-2467.
    Jaffe J E, Hess A C. Hartree-fock study of phase changes in ZnO at high pressure [J]. Phys Rev B, 1993, 48: 7903-7909.
    Kalpana G, Palanivel B, Rajagopalan M. Electronic structure and structura l phase stability in BaS, BaSe and BaTe [J]. Phys Rev B, 1994, 50: 12318-12325.
    Ding Y C, Xiao B. Theoretical study on electronic structure, elastic properties and intrinsic hardness of a new superhard material BeP2N4 [J]. Acta Phys-Chim Sin, 2011, 27(7): 1621-1632. (in Chinese)
    丁迎春, 肖冰. 一种超硬新材料BeP2N4的电子结构和力学性质及本征硬度 [J]. 物理化学学报, 2011, 27(7): 1621-1632.
    Gao F M. Theoretical model of intrinsic hardness [J]. Phys Rev B, 2006, 73: 132104-132107.
    Li Y F, Gao Y M, Xiao B, et al. The electronic, mechanical properties and theoretical hardness of chromium carbides by first-principles calculations [J]. J Alloys Compd, 2011, 509: 5242-5249.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7222) PDF downloads(452) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return