Volume 26 Issue 3
Apr 2015
Turn off MathJax
Article Contents
WANG Huan-Ran, WANG Yong-Gang, HE Hong-Liang. Modeling of Dynamic Tensile Fracture Accounting for Micro-Inertia Effect on Void Growth[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 294-300. doi: 10.11858/gywlxb.2012.03.008
Citation: WANG Huan-Ran, WANG Yong-Gang, HE Hong-Liang. Modeling of Dynamic Tensile Fracture Accounting for Micro-Inertia Effect on Void Growth[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 294-300. doi: 10.11858/gywlxb.2012.03.008

Modeling of Dynamic Tensile Fracture Accounting for Micro-Inertia Effect on Void Growth

doi: 10.11858/gywlxb.2012.03.008
  • Received Date: 18 Oct 2010
  • Rev Recd Date: 25 Jan 2011
  • Publish Date: 15 Jun 2012
  • Axisymmetric unit cell model calculations are used to study void growth in a material containing a periodic array of spherical voids under different loading rate rates. Numerical results show that: Micro-inertia is found to have a strong stabilizing effect on void growth process; (2) The growth rate of void increases with the square root of mean stress; (3) Accounting for micro-inertia effect on void growth and percolation stress relaxation during the void-coalescence process, a simple dynamic damage evolution model is proposed for elastic rigid perfectly plastic materials; (4) By using of the proposed model the spall tests on copper under different impact velocities are simulated, and the numerical predictions are in good agreement with the experimental measurements, verifying the model applicability.

     

  • loading
  • Antoun T H, Seaman L, Curran D R, et al. Spall Fracture [M]. New York: Springer, 2003. [2] Curran D R, Seaman L, Shockey D A. Dynamic failure of solids [J]. Phys Rep, 1987, 147(56): 253-388.
    Czarnota C, Jacques N, Mercier S, et al. Modeling of dynamic ductile fracture and application to simulation of plate impact tests on tantalum [J]. J Mech Phys Solids, 2008, 56: 1624-1650.
    Molinari A, Wright T W. A physical model for nucleation and early growth of voids in ductile materials under dynamic loading [J]. J Mech Phys Solids, 2005, 53: 1476-1504.
    Seaman L, Curran D R and Shockey D A. Computational models for ductile and brittle fracture [J]. J Appl Phys, 1976, 47: 4814-4824.
    Ortiz M, Molinari A. Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material [J]. J Appl Mech, 1992, 59: 48-53.
    Wu X Y, Ramesh K T, Wright T W. The dynamic growth of a single void in a viscoplatic material under transient hydrostatic loading [J]. J Mech Phys Solids, 2003, 51: 1-26.
    Tszeng T C. Quasistatic and dynamic growth of sub-microscale spherical voids [J]. Mech Mater, 2009, 41: 584-598.
    Liu B, Qiu X, Huang Y, et al. The size effect on void growth in ductile materials [J]. J Mech Phys Solids, 2003, 51: 1171-1178.
    Horstemeyer M F, Matalanis M M, Sieber A M, et al. Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence [J]. Int J Plast, 2000, 16: 979-1015.
    Wang Y G, He H L, Wang L L, et al. Percolation description for the early stage of void coalescence during dynamic tensile fracture in ductile materials [J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 127-132. (in Chinese)
    王永刚, 贺红亮, 王礼立, 等. 延性材料动态拉伸断裂早期连通过程的逾渗描述 [J]. 高压物理学报, 2006, 20(2): 127-132.
    Seppala E T, Belak J, Rudd R E. Effect of stress triaxiality on void growth in dynamic fracture of metals: A molecular dynamics study [J]. Phys Rev B, 2004, 69: 134101.
    Seppala E T, Belak J, Rudd R E. Onset of void coalescence during dynamic fracture of ductile metals [J]. Phys Rev Lett, 2004, 93: 245503.
    Zhang X, Liu Q C, Mai Y W. Numerical study on void growth in rate and temperature dependent solids [J]. Int J Fract, 2006, 142: 119-136.
    Hallquist J O. LS-DYNA Theoretical Manual [Z]. California: Livermore Software Technology Corporations, 1998.
    Poritsky H. The collapse or growth of a spherical bubble or cavity in a viscous fluid [A]// Sternberg E. Proceedings of the First US National Congress on Applied Mechanics [C]. New York: ASME, 1952: 813-823.
    Huo B, Zheng Q S, Huang Y. A note on the effect of surface energy and void size to void growth [J]. Eur J Mech A/Solids, 1999, 18: 987-994.
    Qi M L, He H L. Simulation of critical behavior on damage evolution [J]. Chin Phys B, 2010, 19(3): 036201.
    Wang Y G, He H L, Wang L L, et al. Time-resolved dynamic tensile spall of pure aluminum under laser irradiation [J]. J Appl Phys, 2006, 100: 033511.
    Johnson J N. Dynamic fracture and spallation in ductile solids [J]. J Appl Phys, 1981, 52(4): 1812-1825.
    Minich R W, Cazamias J U, Kumar M, et al. Effect of microstructural length scales on spall behavior of copper [J]. Metall Mater Trans A, 2004, 35A: 2663-2673.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7254) PDF downloads(496) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return