Volume 26 Issue 3
Apr 2015
Turn off MathJax
Article Contents
WEI Ben-Xi, MA Yong-Kun, MA Shan-Li, YAN Rui, ZHANG Long, BAI Jie. Inactivation Kinetics of Blackberry -Glucosidase by Combined High Hydrostatic Pressure and Temperature Treatments[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 281-288. doi: 10.11858/gywlxb.2012.03.006
Citation: WEI Ben-Xi, MA Yong-Kun, MA Shan-Li, YAN Rui, ZHANG Long, BAI Jie. Inactivation Kinetics of Blackberry -Glucosidase by Combined High Hydrostatic Pressure and Temperature Treatments[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 281-288. doi: 10.11858/gywlxb.2012.03.006

Inactivation Kinetics of Blackberry -Glucosidase by Combined High Hydrostatic Pressure and Temperature Treatments

doi: 10.11858/gywlxb.2012.03.006
  • Received Date: 14 Jan 2011
  • Rev Recd Date: 25 Feb 2011
  • Publish Date: 15 Jun 2012
  • The inactivation kinetics of -glucosidase in blackberry were investigated at high hydrostatic pressure (300-600 MPa) combined with moderate temperature (35-55 ℃). Analysis of the obtained kinetic data revealed a dual-effect of combined pressure-temperature inactivation: the first one, designated as an instantaneous pressure kill value (IPK), which depended on temperatures and pressures, but was independent of treatment time; and the second one, a labile and stable fraction of -glucosidase from blackberry are present and the inactivation kinetics of -glucosidase by high hydrostatic pressure combined with temperatures are adequately described by the two-fraction model. The kinetic rate constants KLand KS of labile and stable fractions are 2.777 and 0.047 min-1, and the decimal reduction times DL and DS are 0.83 and 49.1 min at 400 MPa and 55 ℃. TZ representing the needs of temperature increase for a 90% reduction of the D value and the activation energy Ea of the labile fraction at 400 MPa are 23.36 ℃ and 81.95 kJ/mol, pZ representing the needs of pressure increase for a 90% reduction of the D value and the activation volume Va at 45 ℃ are 1 111 MPa and -5.02 cm3/mol.

     

  • loading
  • Boateng J, Verghese M, Shackelford L, et al. Selected fruits reduce azoxymethane (AOM)-induced aberrant crypt foci (ACF) in fisher 344 male rats [J]. Food Chem Toxicol, 2007, 45(5): 725-732.
    Serraino I, Dugo L, Dugo P, et al. Protective effects of cyanidin-3-O-glucoside from blackberry extract against peroxynitrite-induced endothelial dysfunction and vascular failure [J]. Life Sci, 2003, 73(9): 1097-1114.
    Sistia M, Fraternale M D. Antifungal activity of rubus ulmifolius schott standardized in vitro culture [J]. Food Sci Tech, 2007, 5: 1-4.
    Koide T, Hashimoto Y, Kamei H, et al. Antitumor effect of anthocyanin fractions extracted from red soybeans and red beans in vitro and in vivo [J]. Cancer Biother Radio, 1997, 12(4): 277-280.
    Tsuda T, Watanabe M, Ohshima K, et al. Antioxidative activity of the anthocyanin pigments cyaniding 3-O--D-glucoside and cyanidin [J]. J Agric Food Chem, 1994, 42: 2407-2410.
    Francis F J. Food colorants: Anthocyanins [J]. Crit Rev Food Sci, 1989, 28: 273-314.
    Jackman R L, Yada R Y, Tung M A, et al. Anthocyanins as food colorants-A review [J]. J Food Biochem, 1987, 11: 201-247.
    Huang H T. Decolorization of anthocyanins by fungal enzymes [J]. J Agric Food Chem, 1955, 3(2): 141-146.
    Wightman J D, Wrolstad R E. Anthocyanin analysis as a measure of glycosidease activity in enzymes for juice processing [J]. J Food Sci, 2006, 60(4): 862-867.
    Zhang Z Q, Pang X Q, Ji Z L, et al. Role of anthocyanin degradation in litchi pericarp browning [J]. Food Chem, 2001, 75: 217-221.
    Sakamura S, Obata Y. Anthocyanase and anthocyanins occurring in eggplant, solanum melongena [J]. Agricultural and Biological Chemistry, 1965, 25: 750-756.
    Barbagallo R N, Palmeri R, Fabiano S, et al. Characteristic of -glucosidase from sicilian blood oranges in relation to anthocyanin degradation [J]. Enzyme Microb Tech, 2007, 41: 570-575.
    Wang W D, Xu S Y. Degradation kinetics of anthocyanins in blackberry juice and concentrate [J]. J Food Eng, 2007, 82(3): 271-275.
    Morild E. The theory of pressure effect on enzymes [J]. Adv Protein Chem, 1981, 34: 93-166.
    Garciapalazon A, Suthanthangjai W, Kajda P, et al. The effects of high hydrostatic pressure on -glucosidase, peroxidase and polyphenoloxidase in red raspberry (Rubus idaeus) and strawberry (Fragariaananassa) [J]. Food Chem, 2004, 88(1): 7-10.
    Suthanthangjai W, Kajda P, Zabetakis I. The effect of high hydrostatic pressure on the anthocyanin of raspberry (Rubus idaeus) [J]. Food Chem, 2005, 90(1-2): 193-197.
    Zabetakis I, Leclerc D, Kajda P. The effect of high hydrostatic pressure on the strawberry anthocyanins [J]. Food Chem, 2000, 48: 2749-2754.
    Ferrari G, Maresca P, Ciccarone R. The application of high hydrostatic pressure for the stabilization of functional foods: Pomegranate juice [J]. J Food Eng, 2010, 100(2): 245-253.
    Orruno E, Apenten R O, Zabkis I. The role of -glucosidase in the biosynthesis of 2, 5-dimethyl-4-hydroxy-3(2h)-furanone in Strawberry (Fragaria ananassa cv. Elsanta) [J]. Flavour Frag J, 2001, 16: 81-84.
    Castro S M, Loey V A, Saraiva J A, et al. Inactivation of pepper (Capsicum annuum) pectin methy-lesterase by combined high-pressure and temperature treatments [J]. J Food Eng, 2006, 75: 50-58.
    Ling A C, Lund D B. Determining kinetic parameters for thermal inactivation of heat resistant and heat labile isoenzymes from thermal destruction curves [J]. J Food Sci, 1978, 43: 1307-1310.
    Indrawati A V, Ludikhuyze L R, Hendrickx M E. Single, combined, or sequential action of pressure and temperature on lipoxygenase in green beans (Phaseolus vulgaris L. ): A kinetic inactivation study [J]. Biotechnol Prog, 1999, 15(2): 273-277.
    Broeck V D, Ludikhuyze L R, Loey V A, et al. Inactivation of orange pectinesterase by combined high-pressure and temperature treatments: A kinetic study [J]. J Agr Food Chem, 2000, 48: 1960-1970.
    Weemaes C A, Ludikhuyze L R, Broeck I V, et al. Kinetics of combined pressure-temperature inactivation avocado polyphenoloxidase [J]. Biotechnol Bioeng, 1998, 60(3): 292-300.
    Basak S, Ramaswamy H S. Ultra high pressure treatment of orange juice: A kinetic study on inactivation of pectin methyl esterase [J]. Food Res Int, 1996, 29(7): 601-607.
    Wang Z, Xu S Y, Tang J. Food Chemistry [M]. Beijing: China Light Industry Press, 1999: 145-146. (in Chinese)
    王璋, 许时婴, 汤坚. 食品化学 [M]. 北京: 中国轻工业出版社, 1999: 145-146.
    Vila-Real H, Alfaia A, Calado A, et al. Beta-glucosidase inactivation from naringinase, using a combined thermal and pH approach [J]. New Biotechnology, 2009, 25(Suppl 1): S148.
    Chang M Y, Kao H C, Shin J R. Thermal inactivation and reactivity of -glucosidase immobilized on chitosan-clay composite [J]. Int J Biol Macromol, 2008, 43: 48-53.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7169) PDF downloads(485) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return